DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: From Protein Design to the Energy Landscape of a Cold Unfolding Protein

Abstract

Understanding protein folding is crucial for protein sciences. The conformational spaces and energy landscapes of cold (unfolded) protein states, as well as the associated transitions, are hardly explored. Furthermore, it is not known how structure relates to the cooperativity of cold transitions, if cold and heat unfolded states are thermodynamically similar, and if cold states play important roles for protein function. We created the cold unfolding 4-helix bundle DCUB1 with a de novo designed bipartite hydrophilic/hydrophobic core featuring a hydrogen bond network which extends across the bundle in order to study the relative importance of hydrophobic versus hydrophilic protein–water interactions for cold unfolding. Structural and thermodynamic characterization resulted in the discovery of a complex energy landscape for cold transitions, while the heat unfolded state is a random coil. Below ~0 °C, the core of DCUB1 disintegrates in a largely cooperative manner, while a near-native helical content is retained. The resulting cold core-unfolded state is compact and features extensive internal dynamics. Below -5 °C, two additional cold transitions are seen, that is, (i) the formation of a water-mediated, compact, and highly dynamic dimer, and (ii) the onset of cold helix unfolding decoupled from cold core unfolding. Our results suggest that coldmore » unfolding is initiated by the intrusion of water into the hydrophilic core network and that cooperativity can be tuned by varying the number of core hydrogen bond networks. Protein design has proven to be invaluable to explore the energy landscapes of cold states and to robustly test related theories.« less

Authors:
 [1];  [2];  [3];  [4];  [5];  [6];  [7]; ORCiD logo [8]; ORCiD logo [9];  [10]; ORCiD logo [11]; ORCiD logo [6]; ORCiD logo [1]
  1. State Univ. of New York (SUNY), Buffalo, NY (United States)
  2. Univ. of North Carolina, Chapel Hill, NC (United States); Menten AI Inc., Palo Alto, CA (United States)
  3. State Univ. of New York at Buffalo, NY (United States)
  4. Univ. of North Carolina, Chapel Hill, NC (United States); Univ. of the Pacific, Stockton, CA (United States)
  5. State Univ. of New York at Buffalo, NY (United States); Astrix Software Technology Inc., Red Bank, NJ (United States)
  6. Univ. of North Carolina, Chapel Hill, NC (United States)
  7. Malvern Panalytical Inc, Northhampton, MA (United States)
  8. Rensselaer Polytechnic Inst., Troy, NY (United States)
  9. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  10. Stanford Univ., CA (United States)
  11. Hauptman-Woodward Medical Research Inst. (HWI), Buffalo, NY (United States); State Univ. of New York at Buffalo, NY (United States)
Publication Date:
Research Org.:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE Laboratory Directed Research and Development (LDRD) Program; National Science Foundation (NSF); National Institutes of Health (NIH)
OSTI Identifier:
1865037
Report Number(s):
LA-UR-21-32367
Journal ID: ISSN 1520-6106
Grant/Contract Number:  
89233218CNA000001; AC02-76SF00515; MCB-1615570; MCB-180104; GM131923; P30GM133894; S10OD021512; 1S10OD012254; 1231306
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Physical Chemistry. B, Condensed Matter, Materials, Surfaces, Interfaces and Biophysical Chemistry
Additional Journal Information:
Journal Volume: 126; Journal Issue: 6; Journal ID: ISSN 1520-6106
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES; cold denaturation; protein design; NMR; simulation; alkyls; molecular structure; molecules; noncovalent interactions; x-rays

Citation Formats

Pulavarti, Surya V.S.R.K., Maguire, Jack B., Yuen, Shirley, Harrison, Joseph S., Griffin, Jermel, Premkumar, Lakshmanane, Esposito, Edward A., Makhatadze, George I., Garcia, Angel E., Weiss, Thomas M., Snell, Edward H., Kuhlman, Brian, and Szyperski, Thomas. From Protein Design to the Energy Landscape of a Cold Unfolding Protein. United States: N. p., 2022. Web. doi:10.1021/acs.jpcb.1c10750.
Pulavarti, Surya V.S.R.K., Maguire, Jack B., Yuen, Shirley, Harrison, Joseph S., Griffin, Jermel, Premkumar, Lakshmanane, Esposito, Edward A., Makhatadze, George I., Garcia, Angel E., Weiss, Thomas M., Snell, Edward H., Kuhlman, Brian, & Szyperski, Thomas. From Protein Design to the Energy Landscape of a Cold Unfolding Protein. United States. https://doi.org/10.1021/acs.jpcb.1c10750
Pulavarti, Surya V.S.R.K., Maguire, Jack B., Yuen, Shirley, Harrison, Joseph S., Griffin, Jermel, Premkumar, Lakshmanane, Esposito, Edward A., Makhatadze, George I., Garcia, Angel E., Weiss, Thomas M., Snell, Edward H., Kuhlman, Brian, and Szyperski, Thomas. Mon . "From Protein Design to the Energy Landscape of a Cold Unfolding Protein". United States. https://doi.org/10.1021/acs.jpcb.1c10750. https://www.osti.gov/servlets/purl/1865037.
@article{osti_1865037,
title = {From Protein Design to the Energy Landscape of a Cold Unfolding Protein},
author = {Pulavarti, Surya V.S.R.K. and Maguire, Jack B. and Yuen, Shirley and Harrison, Joseph S. and Griffin, Jermel and Premkumar, Lakshmanane and Esposito, Edward A. and Makhatadze, George I. and Garcia, Angel E. and Weiss, Thomas M. and Snell, Edward H. and Kuhlman, Brian and Szyperski, Thomas},
abstractNote = {Understanding protein folding is crucial for protein sciences. The conformational spaces and energy landscapes of cold (unfolded) protein states, as well as the associated transitions, are hardly explored. Furthermore, it is not known how structure relates to the cooperativity of cold transitions, if cold and heat unfolded states are thermodynamically similar, and if cold states play important roles for protein function. We created the cold unfolding 4-helix bundle DCUB1 with a de novo designed bipartite hydrophilic/hydrophobic core featuring a hydrogen bond network which extends across the bundle in order to study the relative importance of hydrophobic versus hydrophilic protein–water interactions for cold unfolding. Structural and thermodynamic characterization resulted in the discovery of a complex energy landscape for cold transitions, while the heat unfolded state is a random coil. Below ~0 °C, the core of DCUB1 disintegrates in a largely cooperative manner, while a near-native helical content is retained. The resulting cold core-unfolded state is compact and features extensive internal dynamics. Below -5 °C, two additional cold transitions are seen, that is, (i) the formation of a water-mediated, compact, and highly dynamic dimer, and (ii) the onset of cold helix unfolding decoupled from cold core unfolding. Our results suggest that cold unfolding is initiated by the intrusion of water into the hydrophilic core network and that cooperativity can be tuned by varying the number of core hydrogen bond networks. Protein design has proven to be invaluable to explore the energy landscapes of cold states and to robustly test related theories.},
doi = {10.1021/acs.jpcb.1c10750},
journal = {Journal of Physical Chemistry. B, Condensed Matter, Materials, Surfaces, Interfaces and Biophysical Chemistry},
number = 6,
volume = 126,
place = {United States},
year = {Mon Feb 07 00:00:00 EST 2022},
month = {Mon Feb 07 00:00:00 EST 2022}
}

Works referenced in this record:

Combined Covalent-Electrostatic Model of Hydrogen Bonding Improves Structure Prediction with Rosetta
journal, January 2015

  • O’Meara, Matthew J.; Leaver-Fay, Andrew; Tyka, Michael D.
  • Journal of Chemical Theory and Computation, Vol. 11, Issue 2
  • DOI: 10.1021/ct500864r

BeStSel: a web server for accurate protein secondary structure prediction and fold recognition from the circular dichroism spectra
journal, June 2018

  • Micsonai, András; Wien, Frank; Bulyáki, Éva
  • Nucleic Acids Research, Vol. 46, Issue W1
  • DOI: 10.1093/nar/gky497

A1H-NMR thermometer suitable for cryoprobes
journal, January 2007

  • Findeisen, M.; Brand, T.; Berger, S.
  • Magnetic Resonance in Chemistry, Vol. 45, Issue 2
  • DOI: 10.1002/mrc.1941

Hyperbolic Pressure–Temperature Phase Diagram of the Zinc-Finger Protein apoKti11 Detected by NMR Spectroscopy
journal, January 2019

  • Klamt, Andi; Nagarathinam, Kumar; Tanabe, Mikio
  • The Journal of Physical Chemistry B, Vol. 123, Issue 4
  • DOI: 10.1021/acs.jpcb.8b11019

Contact order, transition state placement and the refolding rates of single domain proteins 1 1Edited by P. E. Wright
journal, April 1998

  • Plaxco, Kevin W.; Simons, Kim T.; Baker, David
  • Journal of Molecular Biology, Vol. 277, Issue 4
  • DOI: 10.1006/jmbi.1998.1645

Statistical survey of the buried waters in the Protein Data Bank
journal, August 2015


On the cooperative formation of non-hydrogen-bonded water at molecular hydrophobic interfaces
journal, July 2013

  • Davis, Joel G.; Rankin, Blake M.; Gierszal, Kamil P.
  • Nature Chemistry, Vol. 5, Issue 9
  • DOI: 10.1038/nchem.1716

Accurate secondary structure prediction and fold recognition for circular dichroism spectroscopy
journal, June 2015

  • Micsonai, András; Wien, Frank; Kernya, Linda
  • Proceedings of the National Academy of Sciences, Vol. 112, Issue 24
  • DOI: 10.1073/pnas.1500851112

Temperature Dependence of the Thermodynamics of Helix–Coil Transition
journal, January 2004


Rapid Sampling of Hydrogen Bond Networks for Computational Protein Design
journal, March 2018

  • Maguire, Jack B.; Boyken, Scott E.; Baker, David
  • Journal of Chemical Theory and Computation, Vol. 14, Issue 5
  • DOI: 10.1021/acs.jctc.8b00033

GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers
journal, September 2015


Aromatic Ring-Flipping in Supercooled Water:  Implications for NMR-Based Structural Biology of Proteins
journal, December 2000

  • Skalicky, Jack J.; Mills, Jeffrey L.; Sharma, Surabhi
  • Journal of the American Chemical Society, Vol. 123, Issue 3
  • DOI: 10.1021/ja003220l

Computational investigation of cold denaturation in the Trp-cage miniprotein
journal, July 2016

  • Kim, Sang Beom; Palmer, Jeremy C.; Debenedetti, Pablo G.
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 32
  • DOI: 10.1073/pnas.1607500113

The Role of Hydration in Protein Stability: Comparison of the Cold and Heat Unfolded States of Yfh1
journal, April 2012

  • Adrover, Miquel; Martorell, Gabriel; Martin, Stephen R.
  • Journal of Molecular Biology, Vol. 417, Issue 5
  • DOI: 10.1016/j.jmb.2012.02.002

α-helix stabilization by alanine relative to glycine: Roles of polar and apolar solvent exposures and of backbone entropy
journal, June 2006

  • López-Llano, J.; Campos, L. A.; Sancho, J.
  • Proteins: Structure, Function, and Bioinformatics, Vol. 64, Issue 3
  • DOI: 10.1002/prot.21041

The Protein Folding Problem: The Role of Theory
journal, October 2021

  • Nassar, Roy; Dignon, Gregory L.; Razban, Rostam M.
  • Journal of Molecular Biology, Vol. 433, Issue 20
  • DOI: 10.1016/j.jmb.2021.167126

Hydrodynamic Radii of Native and Denatured Proteins Measured by Pulse Field Gradient NMR Techniques
journal, December 1999

  • Wilkins, Deborah K.; Grimshaw, Shaun B.; Receveur, Véronique
  • Biochemistry, Vol. 38, Issue 50
  • DOI: 10.1021/bi991765q

Abp1p and Fyn SH3 Domains Fold through Similar Low-Populated Intermediate States
journal, August 2006

  • Korzhnev, Dmitry M.; Neudecker, Philipp; Zarrine-Afsar, Arash
  • Biochemistry, Vol. 45, Issue 34
  • DOI: 10.1021/bi0611560

Water Determines the Structure and Dynamics of Proteins
journal, April 2016

  • Bellissent-Funel, Marie-Claire; Hassanali, Ali; Havenith, Martina
  • Chemical Reviews, Vol. 116, Issue 13
  • DOI: 10.1021/acs.chemrev.5b00664

Behind the folding funnel diagram
journal, June 2011


Low-populated folding intermediates of Fyn SH3 characterized by relaxation dispersion NMR
journal, July 2004

  • Korzhnev, Dmitry M.; Salvatella, Xavier; Vendruscolo, Michele
  • Nature, Vol. 430, Issue 6999
  • DOI: 10.1038/nature02655

Canonical sampling through velocity rescaling
journal, January 2007

  • Bussi, Giovanni; Donadio, Davide; Parrinello, Michele
  • The Journal of Chemical Physics, Vol. 126, Issue 1
  • DOI: 10.1063/1.2408420

Improved protein structure prediction using potentials from deep learning
journal, January 2020


Water–protein dynamic coupling and new opportunities for probing it at low to physiological temperatures in aqueous solutions
journal, January 2012

  • Mamontov, Eugene; Chu, Xiang-qiang
  • Physical Chemistry Chemical Physics, Vol. 14, Issue 33
  • DOI: 10.1039/c2cp41443k

Non-linear rate-equilibrium free energy relationships and Hammond behavior in protein folding
journal, December 2002


De novo design of protein homo-oligomers with modular hydrogen-bond network-mediated specificity
journal, May 2016


Native protein sequences are close to optimal for their structures
journal, September 2000

  • Kuhlman, B.; Baker, D.
  • Proceedings of the National Academy of Sciences, Vol. 97, Issue 19
  • DOI: 10.1073/pnas.97.19.10383

Cold sensitivity of the SARS-CoV-2 spike ectodomain
journal, January 2021

  • Edwards, Robert J.; Mansouri, Katayoun; Stalls, Victoria
  • Nature Structural & Molecular Biology, Vol. 28, Issue 2
  • DOI: 10.1038/s41594-020-00547-5

Limited cooperativity in protein folding
journal, February 2016

  • Muñoz, Victor; Campos, Luis A.; Sadqi, Mourad
  • Current Opinion in Structural Biology, Vol. 36
  • DOI: 10.1016/j.sbi.2015.12.001

Polymorphic transitions in single crystals: A new molecular dynamics method
journal, December 1981

  • Parrinello, M.; Rahman, A.
  • Journal of Applied Physics, Vol. 52, Issue 12
  • DOI: 10.1063/1.328693

Cooperative Cold Denaturation: The Case of the C-Terminal Domain of Ribosomal Protein L9
journal, March 2013

  • Luan, Bowu; Shan, Bing; Baiz, Carlos
  • Biochemistry, Vol. 52, Issue 14
  • DOI: 10.1021/bi3016789

The Complex Energy Landscape of the Protein IscU
journal, September 2015


Perturbing the energy landscape for improved packing during computational protein design
journal, December 2020

  • Maguire, Jack B.; Haddox, Hugh K.; Strickland, Devin
  • Proteins: Structure, Function, and Bioinformatics, Vol. 89, Issue 4
  • DOI: 10.1002/prot.26030

Protein folding ‐ seeing is deceiving
journal, May 2021


Unveiling invisible protein states with NMR spectroscopy
journal, February 2020


α-Helix stability in proteins
journal, September 1992


Towards a structural biology of the hydrophobic effect in protein folding
journal, July 2016

  • Camilloni, Carlo; Bonetti, Daniela; Morrone, Angela
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep28285

Unbiased Cold Denaturation:  Low- and High-Temperature Unfolding of Yeast Frataxin under Physiological Conditions
journal, April 2007

  • Pastore, Annalisa; Martin, Stephen R.; Politou, Anastasia
  • Journal of the American Chemical Society, Vol. 129, Issue 17
  • DOI: 10.1021/ja0714538

Accurate assessment of mass, models and resolution by small-angle scattering
journal, April 2013


VMD: Visual molecular dynamics
journal, February 1996


Converging concepts of protein folding in vitro and in vivo
journal, June 2009

  • Hartl, F. Ulrich; Hayer-Hartl, Manajit
  • Nature Structural & Molecular Biology, Vol. 16, Issue 6
  • DOI: 10.1038/nsmb.1591

Cooperative Thermal Denaturation of Proteins Designed by Binary Patterning of Polar and Nonpolar Amino Acids
journal, March 2000

  • Roy, Sushmita; Hecht, Michael H.
  • Biochemistry, Vol. 39, Issue 16
  • DOI: 10.1021/bi992328e

An 15 N NMR Spin Relaxation Dispersion Study of the Folding of a Pair of Engineered Mutants of Apocytochrome b 562
journal, March 2005

  • Choy, Wing-Yiu; Zhou, Zheng; Bai, Yawen
  • Journal of the American Chemical Society, Vol. 127, Issue 14
  • DOI: 10.1021/ja042560u

The Cold Denatured State Is Compact but Expands at Low Temperatures: Hydrodynamic Properties of the Cold Denatured State of the C-terminal Domain of L9
journal, April 2007


Simulating electrostatic effects on electronic transitions in proteins
journal, June 2014


Cold Denaturation of α-Synuclein Amyloid Fibrils
journal, June 2014

  • Ikenoue, Tatsuya; Lee, Young-Ho; Kardos, József
  • Angewandte Chemie International Edition, Vol. 53, Issue 30
  • DOI: 10.1002/anie.201403815

The Unfolded State of the C-Terminal Domain of L9 Expands at Low but Not at Elevated Temperatures
journal, August 2018

  • Stenzoski, Natalie E.; Luan, Bowu; Holehouse, Alex S.
  • Biophysical Journal, Vol. 115, Issue 4
  • DOI: 10.1016/j.bpj.2018.07.013

Macromolecular modeling and design in Rosetta: recent methods and frameworks
journal, June 2020


Protein Cold Denaturation in Implicit Solvent Simulations: A Transfer Free Energy Approach
journal, May 2021

  • Arsiccio, Andrea; Shea, Joan-Emma
  • The Journal of Physical Chemistry B, Vol. 125, Issue 20
  • DOI: 10.1021/acs.jpcb.1c01694

Psychrophiles: A journey of hope
journal, June 2021

  • Tendulkar, Shivani; Hattiholi, Aishwarya; Chavadar, Mahesh
  • Journal of Biosciences, Vol. 46, Issue 3
  • DOI: 10.1007/s12038-021-00180-4

An optimized strategy to measure protein stability highlights differences between cold and hot unfolded states
journal, May 2017

  • Alfano, Caterina; Sanfelice, Domenico; Martin, Stephen R.
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms15428

How cooperative are protein folding and unfolding transitions?: Cooperativity in Protein Folding/Unfolding Reactions
journal, September 2016

  • Malhotra, Pooja; Udgaonkar, Jayant B.
  • Protein Science, Vol. 25, Issue 11
  • DOI: 10.1002/pro.3015

Role of Hydrophobic Hydration in Protein Stability: A 3D Water-Explicit Protein Model Exhibiting Cold and Heat Denaturation
journal, July 2012

  • Matysiak, Silvina; Debenedetti, Pablo G.; Rossky, Peter J.
  • The Journal of Physical Chemistry B, Vol. 116, Issue 28
  • DOI: 10.1021/jp3039175

An exceptionally stable helix from the ribosomal protein L9: implications for protein folding and stability
journal, August 1997

  • Kuhlman, Brian; Yang, Hui Yu; Boice, Judith A.
  • Journal of Molecular Biology, Vol. 270, Issue 5
  • DOI: 10.1006/jmbi.1997.1146

Cold Denaturation of Protein
journal, January 1990


An Antifreeze Protein Folds with an Interior Network of More Than 400 Semi-Clathrate Waters
journal, February 2014


Cold denaturation of a protein dimer monitored at atomic resolution
journal, February 2013

  • Jaremko, Mariusz; Jaremko, Łukasz; Kim, Hai-Young
  • Nature Chemical Biology, Vol. 9, Issue 4
  • DOI: 10.1038/nchembio.1181

The “cold revolution”. Present and future applications of cold-active enzymes and ice-binding proteins
journal, March 2020


The Use of Circular Dichroism in the Investigation of Protein Structure and Function
journal, December 2000

  • Kelly, Sharon; Price, Nicholas
  • Current Protein & Peptide Science, Vol. 1, Issue 4, p. 349-384
  • DOI: 10.2174/1389203003381315

D614G mutation in the SARS-CoV-2 spike protein enhances viral fitness by desensitizing it to temperature-dependent denaturation
journal, October 2021

  • Yang, Tzu-Jing; Yu, Pei-Yu; Chang, Yuan-Chih
  • Journal of Biological Chemistry, Vol. 297, Issue 4
  • DOI: 10.1016/j.jbc.2021.101238

Structure and Function of Water Molecules Buried in the Protein Core
journal, March 2015


Protein folding by NMR
journal, May 2017

  • Zhuravleva, Anastasia; Korzhnev, Dmitry M.
  • Progress in Nuclear Magnetic Resonance Spectroscopy, Vol. 100
  • DOI: 10.1016/j.pnmrs.2016.10.002

Understanding Cold Denaturation: The Case Study of Yfh1
journal, October 2010

  • Adrover, Miquel; Esposito, Veronica; Martorell, Gabriel
  • Journal of the American Chemical Society, Vol. 132, Issue 45
  • DOI: 10.1021/ja1070174

The Cold-Unfolded State Is Expanded but Contains Long- and Medium-Range Contacts and Is Poorly Described by Homopolymer Models
journal, July 2020


Psychrophilic Enzymes: From Folding to Function and Biotechnology
journal, January 2013


Increasing Sequence Diversity with Flexible Backbone Protein Design: The Complete Redesign of a Protein Hydrophobic Core
journal, June 2012


HYDRONMR: Prediction of NMR Relaxation of Globular Proteins from Atomic-Level Structures and Hydrodynamic Calculations
journal, November 2000

  • Garcı́a de la Torre, J.; Huertas, M. L.; Carrasco, B.
  • Journal of Magnetic Resonance, Vol. 147, Issue 1
  • DOI: 10.1006/jmre.2000.2170

Theory of cold denaturation of proteins
journal, January 2013


Dominant forces in protein folding
journal, August 1990


The new view of hydrophobic free energy
journal, January 2013


Cold Denaturation of the HIV-1 Protease Monomer
journal, February 2017


Combined NMR-observation of cold denaturation in supercooled water and heat denaturation enables accurate measurement of ΔC p of protein unfolding
journal, October 2005

  • Szyperski, Thomas; Mills, Jeffrey L.; Perl, Dieter
  • European Biophysics Journal, Vol. 35, Issue 4
  • DOI: 10.1007/s00249-005-0028-4

Heat capacity of proteins
journal, May 1990


Dynamic hydration shell restores Kauzmann's 1959 explanation of how the hydrophobic factor drives protein folding
journal, August 2014

  • Baldwin, Robert L.
  • Proceedings of the National Academy of Sciences, Vol. 111, Issue 36
  • DOI: 10.1073/pnas.1414556111

Water Mediation in Protein Folding and Molecular Recognition
journal, June 2006


Cold Denaturation Unveiled: Molecular Mechanism of the Asymmetric Unfolding of Yeast Frataxin
journal, October 2015

  • Sanfelice, Domenico; Morandi, Edoardo; Pastore, Annalisa
  • ChemPhysChem, Vol. 16, Issue 17
  • DOI: 10.1002/cphc.201500765

The Protein-Folding Problem, 50 Years On
journal, November 2012


Vapor-liquid equilibria from the triple point up to the critical point for the new generation of TIP4P-like models: TIP4P/Ew, TIP4P/2005, and TIP4P/ice
journal, July 2006

  • Vega, C.; Abascal, J. L. F.; Nezbeda, I.
  • The Journal of Chemical Physics, Vol. 125, Issue 3
  • DOI: 10.1063/1.2215612

The hydrophobic effect and its role in cold denaturation
journal, February 2010


Protein Conformational Space Populated in Solution Probed with Aromatic Residual Dipolar 13 C- 1 H Couplings
journal, March 2013

  • Sathyamoorthy, Bharathwaj; Singarapu, Kiran K.; Garcia, Angel E.
  • ChemBioChem, Vol. 14, Issue 6
  • DOI: 10.1002/cbic.201300016

Navigating the folding routes
journal, March 1995


NMR spectroscopy of hydroxyl protons in supercooled carbohydrates
journal, April 1994

  • Poppe, Leszek; Halbeek, Herman van
  • Nature Structural & Molecular Biology, Vol. 1, Issue 4
  • DOI: 10.1038/nsb0494-215

Diffusion ordered nuclear magnetic resonance spectroscopy: principles and applications
journal, May 1999


Supercooled Water
journal, October 1983


Critical assessment of methods of protein structure prediction (CASP)—Round XIV
journal, October 2021

  • Kryshtafovych, Andriy; Schwede, Torsten; Topf, Maya
  • Proteins: Structure, Function, and Bioinformatics
  • DOI: 10.1002/prot.26237

HullRad: Fast Calculations of Folded and Disordered Protein and Nucleic Acid Hydrodynamic Properties
journal, February 2018


NMR-based structural biology of proteins in supercooled water
journal, March 2011

  • Szyperski, Thomas; Mills, Jeffrey L.
  • Journal of Structural and Functional Genomics, Vol. 12, Issue 1
  • DOI: 10.1007/s10969-011-9111-5

Toward Structural Biology in Supercooled Water
journal, April 2000

  • Skalicky, Jack J.; Sukumaran, Dinesh K.; Mills, Jeffrey L.
  • Journal of the American Chemical Society, Vol. 122, Issue 13
  • DOI: 10.1021/ja9938884

Accessing protein conformational ensembles using room-temperature X-ray crystallography
journal, September 2011

  • Fraser, J. S.; van den Bedem, H.; Samelson, A. J.
  • Proceedings of the National Academy of Sciences, Vol. 108, Issue 39
  • DOI: 10.1073/pnas.1111325108

The Cold Denatured State of the C-terminal Domain of Protein L9 Is Compact and Contains Both Native and Non-native Structure
journal, March 2010

  • Shan, Bing; McClendon, Sebastian; Rospigliosi, Carla
  • Journal of the American Chemical Society, Vol. 132, Issue 13
  • DOI: 10.1021/ja908104s

Hydrophobic-hydrophilic forces in protein folding
journal, June 2017

  • Durell, Stewart R.; Ben-Naim, Arieh
  • Biopolymers, Vol. 107, Issue 8
  • DOI: 10.1002/bip.23020