DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Supersaturation Variability from Scalar Mixing: Evaluation of a New Subgrid-Scale Model Using Direct Numerical Simulations of Turbulent Rayleigh–Bénard Convection

Abstract

We report that supersaturation fluctuations in the atmosphere are critical for cloud processes. A nonlinear dependence on two scalars - water vapor and temperature - leads to different behavior than single scalars in turbulent convection. For modeling such multiscalar processes at subgrid scales (SGS) in large-eddy simulations (LES) or convection-permitting models, a new SGS scheme is implemented in CM1 that solves equations for SGS water vapor and temperature fluctuations and their covariance. The SGS model is evaluated using benchmark direct-numerical simulations (DNS) of turbulent Rayleigh–Bénard convection with water vapor as in the Michigan Tech Pi Cloud Chamber. This idealized setup allows thorough evaluation of the SGS model without complications from other atmospheric processes. DNS results compare favorably with measurements from the chamber. Results from LES using the new SGS model compare well with DNS, including profiles of water vapor and temperature variances, their covariance, and supersaturation variance. SGS supersaturation fluctuations scale appropriately with changes to the LES grid spacing, with the magnitude of SGS fluctuations decreasing relative to those at the resolved scale as the grid spacing is decreased. Sensitivities of covariance and supersaturation statistics to changes in water vapor flux relative to thermal flux are also investigated by modifyingmore » the sidewall conditions. Relative changes in water vapor flux substantially decrease the covariance and increase supersaturation fluctuations even away from boundaries.« less

Authors:
 [1];  [1];  [1];  [1];  [2]
  1. National Center for Atmospheric Research, Boulder, CO (United States)
  2. Michigan Technological Univ., Houghton, MI (United States)
Publication Date:
Research Org.:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Atmospheric Radiation Measurement (ARM) Data Center
Sponsoring Org.:
USDOE Office of Science (SC), Biological and Environmental Research (BER); National Center for Atmospheric Research; National Science Foundation (NSF)
OSTI Identifier:
1862657
Grant/Contract Number:  
SC0020118; 1852977; ASG-2133229
Resource Type:
Accepted Manuscript
Journal Name:
Journal of the Atmospheric Sciences
Additional Journal Information:
Journal Volume: 79; Journal Issue: 4; Journal ID: ISSN 0022-4928
Publisher:
American Meteorological Society
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES; turbulence; cloud microphysics; large eddy simulations; subgrid-scale processes

Citation Formats

Chandrakar, Kamal Kant, Morrison, Hugh, Grabowski, Wojciech W., Bryan, George H., and Shaw, Raymond A. Supersaturation Variability from Scalar Mixing: Evaluation of a New Subgrid-Scale Model Using Direct Numerical Simulations of Turbulent Rayleigh–Bénard Convection. United States: N. p., 2022. Web. doi:10.1175/jas-d-21-0250.1.
Chandrakar, Kamal Kant, Morrison, Hugh, Grabowski, Wojciech W., Bryan, George H., & Shaw, Raymond A. Supersaturation Variability from Scalar Mixing: Evaluation of a New Subgrid-Scale Model Using Direct Numerical Simulations of Turbulent Rayleigh–Bénard Convection. United States. https://doi.org/10.1175/jas-d-21-0250.1
Chandrakar, Kamal Kant, Morrison, Hugh, Grabowski, Wojciech W., Bryan, George H., and Shaw, Raymond A. Fri . "Supersaturation Variability from Scalar Mixing: Evaluation of a New Subgrid-Scale Model Using Direct Numerical Simulations of Turbulent Rayleigh–Bénard Convection". United States. https://doi.org/10.1175/jas-d-21-0250.1. https://www.osti.gov/servlets/purl/1862657.
@article{osti_1862657,
title = {Supersaturation Variability from Scalar Mixing: Evaluation of a New Subgrid-Scale Model Using Direct Numerical Simulations of Turbulent Rayleigh–Bénard Convection},
author = {Chandrakar, Kamal Kant and Morrison, Hugh and Grabowski, Wojciech W. and Bryan, George H. and Shaw, Raymond A.},
abstractNote = {We report that supersaturation fluctuations in the atmosphere are critical for cloud processes. A nonlinear dependence on two scalars - water vapor and temperature - leads to different behavior than single scalars in turbulent convection. For modeling such multiscalar processes at subgrid scales (SGS) in large-eddy simulations (LES) or convection-permitting models, a new SGS scheme is implemented in CM1 that solves equations for SGS water vapor and temperature fluctuations and their covariance. The SGS model is evaluated using benchmark direct-numerical simulations (DNS) of turbulent Rayleigh–Bénard convection with water vapor as in the Michigan Tech Pi Cloud Chamber. This idealized setup allows thorough evaluation of the SGS model without complications from other atmospheric processes. DNS results compare favorably with measurements from the chamber. Results from LES using the new SGS model compare well with DNS, including profiles of water vapor and temperature variances, their covariance, and supersaturation variance. SGS supersaturation fluctuations scale appropriately with changes to the LES grid spacing, with the magnitude of SGS fluctuations decreasing relative to those at the resolved scale as the grid spacing is decreased. Sensitivities of covariance and supersaturation statistics to changes in water vapor flux relative to thermal flux are also investigated by modifying the sidewall conditions. Relative changes in water vapor flux substantially decrease the covariance and increase supersaturation fluctuations even away from boundaries.},
doi = {10.1175/jas-d-21-0250.1},
journal = {Journal of the Atmospheric Sciences},
number = 4,
volume = 79,
place = {United States},
year = {Fri Apr 01 00:00:00 EDT 2022},
month = {Fri Apr 01 00:00:00 EDT 2022}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Figures / Tables:

Table 1 Table 1: Summary of all simulation cases presented in this article. Here, $\langle$η$\rangle$ is the average Kolmogorov length scale in the convection core from DNS runs, and qvs (Ts) is the saturation vapor mixing ratio at the sidewall temperature. The Rayleigh number for these cases is 1.52×109. Note: the gridmore » spacing (Δ) is normalized based on the grid resolution criteria discussed in Grötzbach (1983).« less

Save / Share:

Works referenced in this record:

A Benchmark Simulation for Moist Nonhydrostatic Numerical Models
journal, December 2002


Scale-Invariance and Turbulence Models for Large-Eddy Simulation
journal, January 2000


Large-Eddy Simulation of the Stratocumulus-Capped Boundary Layer with Explicit Filtering and Reconstruction Turbulence Modeling
journal, February 2018

  • Shi, Xiaoming; Hagen, Hannah L.; Chow, Fotini Katopodes
  • Journal of the Atmospheric Sciences, Vol. 75, Issue 2
  • DOI: 10.1175/JAS-D-17-0162.1

Broadening of Cloud Droplet Spectra through Eddy Hopping: Turbulent Entraining Parcel Simulations
journal, October 2018

  • Abade, Gustavo C.; Grabowski, Wojciech W.; Pawlowska, Hanna
  • Journal of the Atmospheric Sciences, Vol. 75, Issue 10
  • DOI: 10.1175/JAS-D-18-0078.1

Supersaturation of Water Vapor in Clouds
journal, December 2003


Entrainment and Mixing in Stratocumulus: Effects of a New Explicit Subgrid-Scale Scheme for Large-Eddy Simulations with Particle-Based Microphysics
journal, July 2019

  • Hoffmann, Fabian; Feingold, Graham
  • Journal of the Atmospheric Sciences, Vol. 76, Issue 7
  • DOI: 10.1175/JAS-D-18-0318.1

Three-dimensional numerical study of the height and mean structure of a heated planetary boundary layer
journal, August 1974


Large-scale flow generation in turbulent convection
journal, April 1981

  • Krishnamurti, R.; Howard, L. N.
  • Proceedings of the National Academy of Sciences, Vol. 78, Issue 4
  • DOI: 10.1073/pnas.78.4.1981

Stratocumulus-capped mixed layers derived from a three-dimensional model
journal, June 1980

  • Deardorff, James W.
  • Boundary-Layer Meteorology, Vol. 18, Issue 4
  • DOI: 10.1007/BF00119502

Vertical-Velocity Skewness in the Buoyancy-Driven Boundary Layer
journal, May 1990


Droplet growth in warm turbulent clouds
journal, February 2012

  • Devenish, B. J.; Bartello, P.; Brenguier, J. -L.
  • Quarterly Journal of the Royal Meteorological Society, Vol. 138, Issue 667
  • DOI: 10.1002/qj.1897

Variability of the Supersaturation in Cumulus Clouds
journal, June 1988


Supersaturation Fluctuations during the Early Stage of Cumulus Formation
journal, April 2017

  • Siebert, Holger; Shaw, Raymond A.
  • Journal of the Atmospheric Sciences, Vol. 74, Issue 4
  • DOI: 10.1175/JAS-D-16-0115.1

Mixed-phase clouds in a turbulent environment. Part 2: Analytic treatment: Mixed-phase clouds in a turbulent environment. Part 2
journal, July 2013

  • Field, P. R.; Hill, A. A.; Furtado, K.
  • Quarterly Journal of the Royal Meteorological Society, Vol. 140, Issue 680
  • DOI: 10.1002/qj.2175

Aerosol removal and cloud collapse accelerated by supersaturation fluctuations in turbulence: TURBULENCE-INDUCED CLOUD CLEANSING
journal, May 2017

  • Chandrakar, K. K.; Cantrell, W.; Ciochetto, D.
  • Geophysical Research Letters, Vol. 44, Issue 9
  • DOI: 10.1002/2017GL072762

Broadening of Cloud Droplet Spectra through Eddy Hopping: Turbulent Adiabatic Parcel Simulations
journal, May 2017

  • Grabowski, Wojciech W.; Abade, Gustavo C.
  • Journal of the Atmospheric Sciences, Vol. 74, Issue 5
  • DOI: 10.1175/JAS-D-17-0043.1

Self-aggregation of clouds in conditionally unstable moist convection
journal, July 2011

  • Pauluis, O.; Schumacher, J.
  • Proceedings of the National Academy of Sciences, Vol. 108, Issue 31
  • DOI: 10.1073/pnas.1102339108

A Laboratory Facility to Study Gas–Aerosol–Cloud Interactions in a Turbulent Environment: The Π Chamber
journal, December 2016

  • Chang, K.; Bench, J.; Brege, M.
  • Bulletin of the American Meteorological Society, Vol. 97, Issue 12
  • DOI: 10.1175/BAMS-D-15-00203.1

Influence of Microphysical Variability on Stochastic Condensation in a Turbulent Laboratory Cloud
journal, January 2018

  • Desai, N.; Chandrakar, K. K.; Chang, K.
  • Journal of the Atmospheric Sciences, Vol. 75, Issue 1
  • DOI: 10.1175/JAS-D-17-0158.1

Turbulent Condensation of Droplets: Direct Simulation and a Stochastic Model
journal, March 2009

  • Paoli, Roberto; Shariff, Karim
  • Journal of the Atmospheric Sciences, Vol. 66, Issue 3
  • DOI: 10.1175/2008JAS2734.1

An Implicit Algebraic Turbulence Closure Scheme for Atmospheric Boundary Layer Simulation
journal, November 2019

  • Shi, Xiaoming; Enriquez, Rica Mae; Street, Robert L.
  • Journal of the Atmospheric Sciences, Vol. 76, Issue 11
  • DOI: 10.1175/JAS-D-18-0375.1

Cloud-Top Entrainment in Stratocumulus Clouds
journal, January 2017


Effects of the large-scale circulation on temperature and water vapor distributions in the Π Chamber
journal, January 2021

  • Anderson, Jesse C.; Thomas, Subin; Prabhakaran, Prasanth
  • Atmospheric Measurement Techniques, Vol. 14, Issue 8
  • DOI: 10.5194/amt-14-5473-2021

Influence of Turbulent Fluctuations on Cloud Droplet Size Dispersion and Aerosol Indirect Effects
journal, September 2018

  • Chandrakar, K. K.; Cantrell, W.; Shaw, R. A.
  • Journal of the Atmospheric Sciences, Vol. 75, Issue 9
  • DOI: 10.1175/JAS-D-18-0006.1

Anelastic and Compressible Simulation of Moist Deep Convection
journal, October 2014

  • Kurowski, Marcin J.; Grabowski, Wojciech W.; Smolarkiewicz, Piotr K.
  • Journal of the Atmospheric Sciences, Vol. 71, Issue 10
  • DOI: 10.1175/JAS-D-14-0017.1

Diffusional growth of cloud droplets in homogeneous isotropic turbulence: DNS, scaled-up DNS, and stochastic model
journal, January 2020

  • Thomas, Lois; Grabowski, Wojciech W.; Kumar, Bipin
  • Atmospheric Chemistry and Physics, Vol. 20, Issue 14
  • DOI: 10.5194/acp-20-9087-2020

P ARTICLE -T URBULENCE I NTERACTIONS IN A TMOSPHERIC C LOUDS
journal, January 2003


Entrainment and detrainment in cumulus convection: an overview
journal, June 2012

  • de Rooy, Wim C.; Bechtold, Peter; Fröhlich, Kristina
  • Quarterly Journal of the Royal Meteorological Society, Vol. 139, Issue 670
  • DOI: 10.1002/qj.1959

Boundary layer structure in turbulent thermal convection and its consequences for the required numerical resolution
journal, July 2010


The effect of saturation fluctuations on droplet growth
journal, December 1997


Subgrid scale variance and dissipation of a scalar field in large eddy simulations
journal, June 2001

  • Jiménez, C.; Ducros, F.; Cuenot, B.
  • Physics of Fluids, Vol. 13, Issue 6
  • DOI: 10.1063/1.1366668

Behavior of the Refractive Index Structure Parameter in the Entraining Convective Boundary Layer
journal, July 1980


Droplet size distributions in turbulent clouds: experimental evaluation of theoretical distributions
journal, October 2019

  • Chandrakar, Kamal Kant; Saito, Izumi; Yang, Fan
  • Quarterly Journal of the Royal Meteorological Society
  • DOI: 10.1002/qj.3692

The Temperature-Humidity Covariance Budget in the Convective Boundary Layer
journal, January 1978


Precipitation-generated oscillations in open cellular cloud fields
journal, August 2010

  • Feingold, Graham; Koren, Ilan; Wang, Hailong
  • Nature, Vol. 466, Issue 7308
  • DOI: 10.1038/nature09314

A Linear- Eddy Model of Turbulent Scalar Transport and Mixing
journal, August 1988


Direct numerical simulation of turbulence and microphysics in the Pi Chamber
journal, February 2022


Effects of Variable Droplet Growth Histories on Droplet Size Distributions. Part I: Theory
journal, May 1989


Aerosol indirect effect from turbulence-induced broadening of cloud-droplet size distributions
journal, November 2016

  • Chandrakar, Kamal Kant; Cantrell, Will; Chang, Kelken
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 50
  • DOI: 10.1073/pnas.1612686113

Cloud Droplet Growth by Condensation in Homogeneous Isotropic Turbulence
journal, June 2009

  • Lanotte, Alessandra S.; Seminara, Agnese; Toschi, Federico
  • Journal of the Atmospheric Sciences, Vol. 66, Issue 6
  • DOI: 10.1175/2008JAS2864.1

The role of turbulent fluctuations in aerosol activation and cloud formation
journal, July 2020

  • Prabhakaran, Prasanth; Shawon, Abu Sayeed Md; Kinney, Gregory
  • Proceedings of the National Academy of Sciences, Vol. 117, Issue 29
  • DOI: 10.1073/pnas.2006426117

Growth of Cloud Droplets in a Turbulent Environment
journal, January 2013


Supersaturation fluctuations in moist turbulent Rayleigh–Bénard convection: a two-scalar transport problem
journal, December 2019

  • Chandrakar, Kamal Kant; Cantrell, Will; Krueger, Steven
  • Journal of Fluid Mechanics, Vol. 884
  • DOI: 10.1017/jfm.2019.895

An Analytical Model for the Two-Scalar Covariance Budget Inside a Uniform Dense Canopy
journal, February 2009

  • Katul, Gabriel G.; Cava, Daniela; Launiainen, Samuli
  • Boundary-Layer Meteorology, Vol. 131, Issue 2
  • DOI: 10.1007/s10546-009-9361-y

Broadening of Cloud Droplet Size Distributions by Condensation in Turbulence
journal, January 2019

  • Saito, Izumi; Gotoh, Toshiyuki; Watanabe, Takeshi
  • Journal of the Meteorological Society of Japan. Ser. II, Vol. 97, Issue 4
  • DOI: 10.2151/jmsj.2019-049

Logarithmic Temperature Profiles in Turbulent Rayleigh-Bénard Convection
journal, September 2012


Supersaturation and Droplet Spectral Evolution in Fog
journal, December 1991


Microscopic Approach to Cloud Droplet Growth by Condensation. Part II: Turbulence, Clustering, and Condensational Growth
journal, December 2002


Turbulence in the Atmosphere
book, January 2010


Inhomogeneous Mixing in Lagrangian Cloud Models: Effects on the Production of Precipitation Embryos
journal, December 2018

  • Hoffmann, Fabian; Yamaguchi, Takanobu; Feingold, Graham
  • Journal of the Atmospheric Sciences, Vol. 76, Issue 1
  • DOI: 10.1175/JAS-D-18-0087.1

Sidewall effects in Rayleigh–Bénard convection
journal, February 2014

  • Stevens, Richard J. A. M.; Lohse, Detlef; Verzicco, Roberto
  • Journal of Fluid Mechanics, Vol. 741
  • DOI: 10.1017/jfm.2013.664

The Temperature–Humidity Covariance in the Marine Surface Layer: A One-dimensional Analytical Model
journal, October 2007

  • Katul, Gabriel G.; Sempreviva, Anna M.; Cava, Daniela
  • Boundary-Layer Meteorology, Vol. 126, Issue 2
  • DOI: 10.1007/s10546-007-9236-z

The use of dual heat injection to infer scalar covariance decay in grid turbulence
journal, March 1981


Scaling of an Atmospheric Model to Simulate Turbulence and Cloud Microphysics in the Pi Chamber
journal, July 2019

  • Thomas, Subin; Ovchinnikov, Mikhail; Yang, Fan
  • Journal of Advances in Modeling Earth Systems, Vol. 11, Issue 7
  • DOI: 10.1029/2019MS001670

Confronting the Challenge of Modeling Cloud and Precipitation Microphysics
journal, July 2020

  • Morrison, Hugh; Lier‐Walqui, Marcus; Fridlind, Ann M.
  • Journal of Advances in Modeling Earth Systems, Vol. 12, Issue 8
  • DOI: 10.1029/2019MS001689

Transport Processes in the Tropical Warm Pool Boundary Layer. Part II: Vertical Structure and Variability
journal, August 1997


Three-dimensional numerical study of turbulence in an entraining mixed layer
journal, October 1974


Drop Growth Due to High Supersaturation Caused by Isobaric Mixing
journal, May 2000


Continuous Growth of Droplet Size Variance due to Condensation in Turbulent Clouds
journal, October 2015


Moisture statistics in free convective boundary layers growing into linearly stratified atmospheres: Moisture Statistics in Free Convection
journal, July 2017

  • Mellado, Juan Pedro; Puche, Marc; van Heerwaarden, Chiel C.
  • Quarterly Journal of the Royal Meteorological Society, Vol. 143, Issue 707
  • DOI: 10.1002/qj.3095

Gravity Currents in Confined Channels with Environmental Shear
journal, March 2014

  • Bryan, George H.; Rotunno, Richard
  • Journal of the Atmospheric Sciences, Vol. 71, Issue 3
  • DOI: 10.1175/JAS-D-13-0157.1

Spatial resolution requirements for direct numerical simulation of the Rayleigh-Bénard convection
journal, February 1983