DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Colloidal Synthesis Path to 2D Crystalline Quantum Dot Superlattices

Abstract

By combining colloidal nanocrystal synthesis, self-assembly, and solution phase epitaxial growth techniques, we developed a general method for preparing single dot thick atomically attached quantum dot (QD) superlattices with high-quality translational and crystallographic orientational order along with state-of-the-art uniformity in the attachment thickness. The procedure begins with colloidal synthesis of hexagonal prism shaped core/shell QDs (e.g., CdSe/CdS), followed by liquid subphase self-assembly and immobilization of superlattices on a substrate. Solution phase epitaxial growth of additional semiconductor material fills in the voids between the particles, resulting in a QD-in-matrix structure. The photoluminescence emission spectra of the QD-in-matrix structure retains characteristic 0D electronic confinement. Importantly, annealing of the resulting structures removes inhomogeneities in the QD–QD inorganic bridges, which our atomistic electronic structure calculations demonstrate would otherwise lead to Anderson-type localization. The piecewise nature of this procedure allows one to independently tune the size and material of the QD core, shell, QD–QD distance, and the matrix material. These four choices can be tuned to control many properties (degree of quantum confinement, quantum coupling, band alignments, etc.) depending on the specific applications. Lastly, cation exchange reactions can be performed on the final QD-in-matrix, as demonstrated herein with a CdSe/CdS to HgSe/HgS conversion.

Authors:
ORCiD logo [1];  [2];  [3]; ORCiD logo [4]; ORCiD logo [5]
  1. Univ. of California, Berkeley, CA (United States); Kavli Energy NanoScience Inst., Berkeley, CA (United States)
  2. Univ. of California, Berkeley, CA (United States); Harvard Univ., Cambridge, MA (United States)
  3. Univ. of California, Berkeley, CA (United States)
  4. Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Tel Aviv Univ., Tel Aviv (Israel)
  5. Univ. of California, Berkeley, CA (United States); Kavli Energy NanoScience Inst., Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1839253
Grant/Contract Number:  
AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
ACS Nano
Additional Journal Information:
Journal Volume: 15; Journal Issue: 2; Journal ID: ISSN 1936-0851
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; self-assembly; oriented attachment; nanocrystal superlattices; quantum dots; CdSe; thickness; lattices; physical and chemical processes; transmission electron microscopy; nanocrystals

Citation Formats

Ondry, Justin C., Philbin, John P., Lostica, Michael, Rabani, Eran, and Alivisatos, A. Paul. Colloidal Synthesis Path to 2D Crystalline Quantum Dot Superlattices. United States: N. p., 2020. Web. doi:10.1021/acsnano.0c07202.
Ondry, Justin C., Philbin, John P., Lostica, Michael, Rabani, Eran, & Alivisatos, A. Paul. Colloidal Synthesis Path to 2D Crystalline Quantum Dot Superlattices. United States. https://doi.org/10.1021/acsnano.0c07202
Ondry, Justin C., Philbin, John P., Lostica, Michael, Rabani, Eran, and Alivisatos, A. Paul. Wed . "Colloidal Synthesis Path to 2D Crystalline Quantum Dot Superlattices". United States. https://doi.org/10.1021/acsnano.0c07202. https://www.osti.gov/servlets/purl/1839253.
@article{osti_1839253,
title = {Colloidal Synthesis Path to 2D Crystalline Quantum Dot Superlattices},
author = {Ondry, Justin C. and Philbin, John P. and Lostica, Michael and Rabani, Eran and Alivisatos, A. Paul},
abstractNote = {By combining colloidal nanocrystal synthesis, self-assembly, and solution phase epitaxial growth techniques, we developed a general method for preparing single dot thick atomically attached quantum dot (QD) superlattices with high-quality translational and crystallographic orientational order along with state-of-the-art uniformity in the attachment thickness. The procedure begins with colloidal synthesis of hexagonal prism shaped core/shell QDs (e.g., CdSe/CdS), followed by liquid subphase self-assembly and immobilization of superlattices on a substrate. Solution phase epitaxial growth of additional semiconductor material fills in the voids between the particles, resulting in a QD-in-matrix structure. The photoluminescence emission spectra of the QD-in-matrix structure retains characteristic 0D electronic confinement. Importantly, annealing of the resulting structures removes inhomogeneities in the QD–QD inorganic bridges, which our atomistic electronic structure calculations demonstrate would otherwise lead to Anderson-type localization. The piecewise nature of this procedure allows one to independently tune the size and material of the QD core, shell, QD–QD distance, and the matrix material. These four choices can be tuned to control many properties (degree of quantum confinement, quantum coupling, band alignments, etc.) depending on the specific applications. Lastly, cation exchange reactions can be performed on the final QD-in-matrix, as demonstrated herein with a CdSe/CdS to HgSe/HgS conversion.},
doi = {10.1021/acsnano.0c07202},
journal = {ACS Nano},
number = 2,
volume = 15,
place = {United States},
year = {Wed Dec 30 00:00:00 EST 2020},
month = {Wed Dec 30 00:00:00 EST 2020}
}

Works referenced in this record:

Quantum dot solids showing state-resolved band-like transport
journal, January 2020


Interfacial Self-Assembly and Oriented Attachment in the Family of PbX (X = S, Se, Te) Nanocrystals
journal, May 2018

  • van Overbeek, Carlo; Peters, Joep L.; van Rossum, Susan A. P.
  • The Journal of Physical Chemistry C, Vol. 122, Issue 23
  • DOI: 10.1021/acs.jpcc.8b01876

Structural, Optical, and Electrical Properties of Self-Assembled Films of PbSe Nanocrystals Treated with 1,2-Ethanedithiol
journal, January 2008

  • Luther, Joseph M.; Law, Matt; Song, Qing
  • ACS Nano, Vol. 2, Issue 2
  • DOI: 10.1021/nn7003348

Self-Organization of CdSe Nanocrystallites into Three-Dimensional Quantum Dot Superlattices
journal, November 1995


Compact high-quality CdSe–CdS core–shell nanocrystals with narrow emission linewidths and suppressed blinking
journal, February 2013

  • Chen, Ou; Zhao, Jing; Chauhan, Vikash P.
  • Nature Materials, Vol. 12, Issue 5
  • DOI: 10.1038/nmat3539

Identification of atomic-like electronic states in indium arsenide nanocrystal quantum dots
journal, August 1999

  • Banin, Uri; Cao, YunWei; Katz, David
  • Nature, Vol. 400, Issue 6744
  • DOI: 10.1038/22979

Effect of Thermal Fluctuations on the Radiative Rate in Core/Shell Quantum Dots
journal, February 2017


Absence of Diffusion in Certain Random Lattices
journal, March 1958


Deposition of metal chalcogenide thin films by successive ionic layer adsorption and reaction (SILAR) method
journal, April 2004

  • Pathan, H. M.; Lokhande, C. D.
  • Bulletin of Materials Science, Vol. 27, Issue 2
  • DOI: 10.1007/BF02708491

DiffTools: Electron diffraction software tools for DigitalMicrograph™
journal, August 2008

  • Mitchell, D. R. G.
  • Microscopy Research and Technique, Vol. 71, Issue 8
  • DOI: 10.1002/jemt.20591

Fast Parallel Algorithms for Short-Range Molecular Dynamics
journal, March 1995


High charge mobility in two-dimensional percolative networks of PbSe quantum dots connected by atomic bonds
journal, September 2015

  • Evers, Wiel H.; Schins, Juleon M.; Aerts, Michiel
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms9195

VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data
journal, October 2011


Colloidal Nanocrystals with Molecular Metal Chalcogenide Surface Ligands
journal, June 2009


Self-Assembly of Colloidal Hexagonal Bipyramid- and Bifrustum-Shaped ZnS Nanocrystals into Two-Dimensional Superstructures
journal, January 2014

  • van der Stam, Ward; Gantapara, Anjan P.; Akkerman, Quinten A.
  • Nano Letters, Vol. 14, Issue 2
  • DOI: 10.1021/nl4046069

Resilient Pathways to Atomic Attachment of Quantum Dot Dimers and Artificial Solids from Faceted CdSe Quantum Dot Building Blocks
journal, June 2019


Charge transport and localization in atomically coherent quantum dot solids
journal, February 2016

  • Whitham, Kevin; Yang, Jun; Savitzky, Benjamin H.
  • Nature Materials, Vol. 15, Issue 5
  • DOI: 10.1038/nmat4576

Successive Ionic Layer Absorption and Reaction for Postassembly Control over Inorganic Interdot Bonds in Long-Range Ordered Nanocrystal Films
journal, April 2017

  • Treml, Benjamin E.; Savitzky, Benjamin H.; Tirmzi, Ali M.
  • ACS Applied Materials & Interfaces, Vol. 9, Issue 15
  • DOI: 10.1021/acsami.7b01588

Sequential Cation Exchange in Nanocrystals: Preservation of Crystal Phase and Formation of Metastable Phases
journal, November 2011

  • Li, Hongbo; Zanella, Marco; Genovese, Alessandro
  • Nano Letters, Vol. 11, Issue 11
  • DOI: 10.1021/nl202927a

The Electronic Structure of CdSe/CdS Core/Shell Seeded Nanorods: Type-I or Quasi-Type-II?
journal, November 2013

  • Eshet, Hagai; Grünwald, Michael; Rabani, Eran
  • Nano Letters, Vol. 13, Issue 12
  • DOI: 10.1021/nl402722n

CdSe@CdS Dot@Platelet Nanocrystals: Controlled Epitaxy, Monoexponential Decay of Two-Dimensional Exciton, and Nonblinking Photoluminescence of Single Nanocrystal
journal, October 2019

  • Wang, Yonghong; Pu, Chaodan; Lei, Hairui
  • Journal of the American Chemical Society, Vol. 141, Issue 44
  • DOI: 10.1021/jacs.9b06932

Evaluation of Ordering in Single-Component and Binary Nanocrystal Superlattices by Analysis of Their Autocorrelation Functions
journal, February 2011

  • Pichler, Stefan; Bodnarchuk, Maryna I.; Kovalenko, Maksym V.
  • ACS Nano, Vol. 5, Issue 3
  • DOI: 10.1021/nn200265e

Structural Characterization of Self-Assembled Multifunctional Binary Nanoparticle Superlattices
journal, March 2006

  • Shevchenko, Elena V.; Talapin, Dmitri V.; Murray, Christopher B.
  • Journal of the American Chemical Society, Vol. 128, Issue 11
  • DOI: 10.1021/ja0564261

Inverse Temperature Dependence of Charge Carrier Hopping in Quantum Dot Solids
journal, June 2018

  • Gilmore, Rachel H.; Winslow, Samuel W.; Lee, Elizabeth M. Y.
  • ACS Nano, Vol. 12, Issue 8
  • DOI: 10.1021/acsnano.8b01643

Confined-but-Connected Quantum Solids via Controlled Ligand Displacement
journal, June 2013

  • Baumgardner, William J.; Whitham, Kevin; Hanrath, Tobias
  • Nano Letters, Vol. 13, Issue 7
  • DOI: 10.1021/nl401298s

Charge Carrier Hopping Dynamics in Homogeneously Broadened PbS Quantum Dot Solids
journal, January 2017


Ligand Exchange on Colloidal CdSe Nanocrystals Using Thermally Labile tert -Butylthiol for Improved Photocurrent in Nanocrystal Films
journal, December 2011

  • Webber, David H.; Brutchey, Richard L.
  • Journal of the American Chemical Society, Vol. 134, Issue 2
  • DOI: 10.1021/ja208878h

Propagation of Structural Disorder in Epitaxially Connected Quantum Dot Solids from Atomic to Micron Scale
journal, August 2016


Effects of Disorder on Electronic Properties of Nanocrystal Assemblies
journal, January 2015

  • Yang, Jun; Wise, Frank W.
  • The Journal of Physical Chemistry C, Vol. 119, Issue 6
  • DOI: 10.1021/jp5098469

Evolution of Ordered Metal Chalcogenide Architectures through Chemical Transformations
journal, May 2013

  • Rivest, Jessy B.; Buonsanti, Raffaella; Pick, Teresa E.
  • Journal of the American Chemical Society, Vol. 135, Issue 20, p. 7446-7449
  • DOI: 10.1021/ja403071w

Exciton Transfer in Array of Epitaxially Connected Nanocrystals
journal, November 2016


Collective topo-epitaxy in the self-assembly of a 3D quantum dot superlattice
journal, October 2019


Colloidal CdSe/CdS Dot-in-Plate Nanocrystals with 2D-Polarized Emission
journal, July 2012

  • Cassette, Elsa; Mahler, Benoît; Guigner, Jean-Michel
  • ACS Nano, Vol. 6, Issue 8
  • DOI: 10.1021/nn3024255

Long-range orientation and atomic attachment of nanocrystals in 2D honeycomb superlattices
journal, May 2014


Charge transport in semiconductors assembled from nanocrystal quantum dots
journal, June 2020


Mechanistic Insights into Superlattice Transformation at a Single Nanocrystal Level Using Nanobeam Electron Diffraction
journal, June 2020


Forging Colloidal Nanostructures via Cation Exchange Reactions
journal, February 2016


Superradiance of quantum dots
journal, January 2007

  • Scheibner, Michael; Schmidt, Thomas; Worschech, Lukas
  • Nature Physics, Vol. 3, Issue 2
  • DOI: 10.1038/nphys494

Setting Carriers Free: Healing Faulty Interfaces Promotes Delocalization and Transport in Nanocrystal Solids
journal, November 2019


Stillinger-Weber potential for the II-VI elements Zn-Cd-Hg-S-Se-Te
journal, August 2013


Orientational Disorder in Epitaxially Connected Quantum Dot Solids
journal, September 2019

  • McCray, Arthur R. C.; Savitzky, Benjamin H.; Whitham, Kevin
  • ACS Nano, Vol. 13, Issue 10
  • DOI: 10.1021/acsnano.9b04951

Structural, Optical, and Electrical Properties of PbSe Nanocrystal Solids Treated Thermally or with Simple Amines
journal, May 2008

  • Law, Matt; Luther, Joseph M.; Song, Qing
  • Journal of the American Chemical Society, Vol. 130, Issue 18
  • DOI: 10.1021/ja800040c

Re-examination of the Size-Dependent Absorption Properties of CdSe Quantum Dots
journal, October 2009

  • Jasieniak, Jacek; Smith, Lisa; van Embden, Joel
  • The Journal of Physical Chemistry C, Vol. 113, Issue 45
  • DOI: 10.1021/jp906827m

Electronic structure of atomically coherent square semiconductor superlattices with dimensionality below two
journal, September 2013


Influence of the Ion Coordination Number on Cation Exchange Reactions with Copper Telluride Nanocrystals
journal, May 2016

  • Tu, Renyong; Xie, Yi; Bertoni, Giovanni
  • Journal of the American Chemical Society, Vol. 138, Issue 22
  • DOI: 10.1021/jacs.6b02830

Synthesis and Micrometer-Scale Assembly of Colloidal CdSe/CdS Nanorods Prepared by a Seeded Growth Approach
journal, October 2007

  • Carbone, Luigi; Nobile, Concetta; De Giorgi, Milena
  • Nano Letters, Vol. 7, Issue 10
  • DOI: 10.1021/nl0717661

Very Large Electronic Structure Calculations Using an Out-of-Core Filter-Diagonalization Method
journal, July 2002


Size-Dependent Electrical Transport in CdSe Nanocrystal Thin Films
journal, September 2010

  • Kang, Moon Sung; Sahu, Ayaskanta; Norris, David J.
  • Nano Letters, Vol. 10, Issue 9
  • DOI: 10.1021/nl102356x

Local-density-derived semiempirical pseudopotentials
journal, June 1995


Semiconductor Clusters, Nanocrystals, and Quantum Dots
journal, February 1996


Electronically Coupled Nanocrystal Superlattice Films by in Situ Ligand Exchange at the Liquid–Air Interface
journal, November 2013

  • Dong, Angang; Jiao, Yucong; Milliron, Delia J.
  • ACS Nano, Vol. 7, Issue 12
  • DOI: 10.1021/nn404566b

Binary nanocrystal superlattice membranes self-assembled at the liquid–air interface
journal, July 2010

  • Dong, Angang; Chen, Jun; Vora, Patrick M.
  • Nature, Vol. 466, Issue 7305
  • DOI: 10.1038/nature09188

Superfluorescence from lead halide perovskite quantum dot superlattices
journal, November 2018


Oleic Acid-Induced Atomic Alignment of ZnS Polyhedral Nanocrystals
journal, March 2016


Theory and practical recommendations for autocorrelation-based image correlation spectroscopy
journal, August 2012


Course materials and datasets for the Alivisatos group-based undergraduate research program
other, January 2021


Course materials and datasets for the Alivisatos group-based undergraduate research program
dataset, January 2021


Course materials and datasets for the Alivisatos group-based undergraduate research program
dataset, January 2021


Works referencing / citing this record:

Course materials and datasets for the Alivisatos group-based undergraduate research program
other, January 2021


Course materials and datasets for the Alivisatos group-based undergraduate research program
dataset, January 2021


Course materials and datasets for the Alivisatos group-based undergraduate research program
other, January 2021


Course materials and datasets for the Alivisatos group-based undergraduate research program
dataset, January 2021