DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Unraveling Shuttle Effect and Suppression Strategy in Lithium/Sulfur Cells by In Situ/Operando X-ray Absorption Spectroscopic Characterization

Abstract

The polysulfides shuttle effect represents a great challenge in achieving high capacity and long lifespan of lithium/sulfur (Li/S) cells. A comprehensive understanding of the shuttle-related sulfur speciation and diffusion process is vital for addressing this issue. Herein, we employed in situ/operando X-ray absorption spectroscopy (XAS) to trace the migration of polysulfides across the Li/S cells by precisely monitoring the sulfur chemical speciation at the cathodic electrolyte-separator and electrolyte-anode interfaces, respectively, in a real-time condition. After we adopted a shuttle-suppressing strategy by introducing an electrocatalytic layer of twinborn bismuth sulfide/bismuth oxide nanoclusters in a carbon matrix (BSOC), we found the Li/S cell showed greatly improved sulfur utilization and longer life span. The operando S K-edge XAS results revealed that the BSOC modification was bi-functional: trapping polysulfides and catalyzing conversion of sulfur species simultaneously. We elucidated that the polysulfide trapping-and-catalyzing effect of the BSOC electrocatalytic layer resulted in an effective lithium anode protection. Finally, our results could offer potential stratagem for designing more advanced Li/S cells.

Authors:
 [1]; ORCiD logo [2];  [1];  [3];  [4];  [5];  [5]; ORCiD logo [5];  [2];  [6];  [7];  [5];  [4];  [5];  [5];  [4];  [5]; ORCiD logo [5];  [4]
  1. Tsinghua Univ., Beijing (China); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  2. Chinese Academy of Sciences (CAS), Suzhou (China)
  3. Chinese Academy of Sciences (CAS), Shanghai (China)
  4. Tsinghua Univ., Beijing (China)
  5. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  6. State Key Laboratory of Low‐Dimensional Quantum Physics and Department of Physics Tsinghua University Beijing100084China
  7. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Chinese Academy of Sciences (CAS), Shanghai (China)
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); National Key Research and Development Program of China; National Natural Science Foundation of China (NSFC)
OSTI Identifier:
1838431
Grant/Contract Number:  
AC02-05CH11231; 2016YFB0100100; 21433013; U1832218
Resource Type:
Accepted Manuscript
Journal Name:
Energy & Environmental Materials
Additional Journal Information:
Journal Volume: 4; Journal Issue: 2; Journal ID: ISSN 2575-0356
Publisher:
Wiley - Zhengzhou University
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; in situ/operando; lithium/sulfur cell; shuttle effect; sulfur speciation; x-ray absorption spectroscopy

Citation Formats

Jia, Lujie, Wang, Jian, Ren, Shuaiyang, Ren, Guoxi, Jin, Xiang, Kao, Licheng, Feng, Xuefei, Yang, Feipeng, Wang, Qi, Pan, Ludi, Li, Qingtian, Liu, Yi‐sheng, Wu, Yang, Liu, Gao, Feng, Jun, Fan, Shoushan, Ye, Yifan, Guo, Jinghua, and Zhang, Yuegang. Unraveling Shuttle Effect and Suppression Strategy in Lithium/Sulfur Cells by In Situ/Operando X-ray Absorption Spectroscopic Characterization. United States: N. p., 2020. Web. doi:10.1002/eem2.12152.
Jia, Lujie, Wang, Jian, Ren, Shuaiyang, Ren, Guoxi, Jin, Xiang, Kao, Licheng, Feng, Xuefei, Yang, Feipeng, Wang, Qi, Pan, Ludi, Li, Qingtian, Liu, Yi‐sheng, Wu, Yang, Liu, Gao, Feng, Jun, Fan, Shoushan, Ye, Yifan, Guo, Jinghua, & Zhang, Yuegang. Unraveling Shuttle Effect and Suppression Strategy in Lithium/Sulfur Cells by In Situ/Operando X-ray Absorption Spectroscopic Characterization. United States. https://doi.org/10.1002/eem2.12152
Jia, Lujie, Wang, Jian, Ren, Shuaiyang, Ren, Guoxi, Jin, Xiang, Kao, Licheng, Feng, Xuefei, Yang, Feipeng, Wang, Qi, Pan, Ludi, Li, Qingtian, Liu, Yi‐sheng, Wu, Yang, Liu, Gao, Feng, Jun, Fan, Shoushan, Ye, Yifan, Guo, Jinghua, and Zhang, Yuegang. Thu . "Unraveling Shuttle Effect and Suppression Strategy in Lithium/Sulfur Cells by In Situ/Operando X-ray Absorption Spectroscopic Characterization". United States. https://doi.org/10.1002/eem2.12152. https://www.osti.gov/servlets/purl/1838431.
@article{osti_1838431,
title = {Unraveling Shuttle Effect and Suppression Strategy in Lithium/Sulfur Cells by In Situ/Operando X-ray Absorption Spectroscopic Characterization},
author = {Jia, Lujie and Wang, Jian and Ren, Shuaiyang and Ren, Guoxi and Jin, Xiang and Kao, Licheng and Feng, Xuefei and Yang, Feipeng and Wang, Qi and Pan, Ludi and Li, Qingtian and Liu, Yi‐sheng and Wu, Yang and Liu, Gao and Feng, Jun and Fan, Shoushan and Ye, Yifan and Guo, Jinghua and Zhang, Yuegang},
abstractNote = {The polysulfides shuttle effect represents a great challenge in achieving high capacity and long lifespan of lithium/sulfur (Li/S) cells. A comprehensive understanding of the shuttle-related sulfur speciation and diffusion process is vital for addressing this issue. Herein, we employed in situ/operando X-ray absorption spectroscopy (XAS) to trace the migration of polysulfides across the Li/S cells by precisely monitoring the sulfur chemical speciation at the cathodic electrolyte-separator and electrolyte-anode interfaces, respectively, in a real-time condition. After we adopted a shuttle-suppressing strategy by introducing an electrocatalytic layer of twinborn bismuth sulfide/bismuth oxide nanoclusters in a carbon matrix (BSOC), we found the Li/S cell showed greatly improved sulfur utilization and longer life span. The operando S K-edge XAS results revealed that the BSOC modification was bi-functional: trapping polysulfides and catalyzing conversion of sulfur species simultaneously. We elucidated that the polysulfide trapping-and-catalyzing effect of the BSOC electrocatalytic layer resulted in an effective lithium anode protection. Finally, our results could offer potential stratagem for designing more advanced Li/S cells.},
doi = {10.1002/eem2.12152},
journal = {Energy & Environmental Materials},
number = 2,
volume = 4,
place = {United States},
year = {Thu Nov 05 00:00:00 EST 2020},
month = {Thu Nov 05 00:00:00 EST 2020}
}

Works referenced in this record:

In Situ X-ray Absorption Spectroscopic Investigation of the Capacity Degradation Mechanism in Mg/S Batteries
journal, March 2019


Toward More Reliable Lithium–Sulfur Batteries: An All-Graphene Cathode Structure
journal, August 2016


A three-dimensional self-assembled SnS 2 -nano-dots@graphene hybrid aerogel as an efficient polysulfide reservoir for high-performance lithium–sulfur batteries
journal, January 2018

  • Luo, Liu; Chung, Sheng-Heng; Manthiram, Arumugam
  • Journal of Materials Chemistry A, Vol. 6, Issue 17
  • DOI: 10.1039/C8TA01089G

Tailored Reaction Route by Micropore Confinement for Li-S Batteries Operating under Lean Electrolyte Conditions
journal, May 2018

  • Wang, Hui; Adams, Brian D.; Pan, Huilin
  • Advanced Energy Materials, Vol. 8, Issue 21
  • DOI: 10.1002/aenm.201800590

Fingerprinting Lithium-Sulfur Battery Reaction Products by X-ray Absorption Spectroscopy
journal, January 2014

  • Wujcik, Kevin H.; Velasco-Velez, Juan; Wu, Cheng Hao
  • Journal of The Electrochemical Society, Vol. 161, Issue 6
  • DOI: 10.1149/2.078406jes

Flexible self-supporting graphene–sulfur paper for lithium sulfur batteries
journal, January 2013

  • Jin, Jun; Wen, Zhaoyin; Ma, Guoqiang
  • RSC Advances, Vol. 3, Issue 8
  • DOI: 10.1039/c2ra22808d

Powering Lithium–Sulfur Battery Performance by Propelling Polysulfide Redox at Sulfiphilic Hosts
journal, December 2015


High areal capacity flexible sulfur cathode based on multi-functionalized super-aligned carbon nanotubes
journal, March 2019


A Long-Life, High-Rate Lithium/Sulfur Cell: A Multifaceted Approach to Enhancing Cell Performance
journal, November 2013

  • Song, Min-Kyu; Zhang, Yuegang; Cairns, Elton J.
  • Nano Letters, Vol. 13, Issue 12
  • DOI: 10.1021/nl402793z

Sulfur/three-dimensional graphene composite for high performance lithium–sulfur batteries
journal, February 2015


Challenges and Prospects of Lithium–Sulfur Batteries
journal, June 2012

  • Manthiram, Arumugam; Fu, Yongzhu; Su, Yu-Sheng
  • Accounts of Chemical Research, Vol. 46, Issue 5
  • DOI: 10.1021/ar300179v

Porous Hollow Carbon@Sulfur Composites for High-Power Lithium-Sulfur Batteries
journal, May 2011

  • Jayaprakash, N.; Shen, J.; Moganty, Surya S.
  • Angewandte Chemie International Edition, Vol. 50, Issue 26, p. 5904-5908
  • DOI: 10.1002/anie.201100637

Leaf-Like Graphene-Oxide-Wrapped Sulfur for High-Performance Lithium-Sulfur Battery
journal, June 2015


Rechargeable Lithium–Sulfur Batteries
journal, July 2014

  • Manthiram, Arumugam; Fu, Yongzhu; Chung, Sheng-Heng
  • Chemical Reviews, Vol. 114, Issue 23
  • DOI: 10.1021/cr500062v

Understanding the Charging Mechanism of Lithium-Sulfur Batteries Using Spatially Resolved Operando X-Ray Absorption Spectroscopy
journal, January 2016

  • Gorlin, Yelena; Patel, Manu U. M.; Freiberg, Anna
  • Journal of The Electrochemical Society, Vol. 163, Issue 6
  • DOI: 10.1149/2.0631606jes

Robust electrical “highway” network for high mass loading sulfur cathode
journal, October 2017


Ultrathin MnO 2 /Graphene Oxide/Carbon Nanotube Interlayer as Efficient Polysulfide-Trapping Shield for High-Performance Li-S Batteries
journal, March 2017

  • Kong, Weibang; Yan, Lingjia; Luo, Yufeng
  • Advanced Functional Materials, Vol. 27, Issue 18
  • DOI: 10.1002/adfm.201606663

Single-atom catalyst boosts electrochemical conversion reactions in batteries
journal, March 2019


Tuning Transition Metal Oxide-Sulfur Interactions for Long Life Lithium Sulfur Batteries: The “Goldilocks” Principle
journal, December 2015

  • Liang, Xiao; Kwok, Chun Yuen; Lodi-Marzano, Fernanda
  • Advanced Energy Materials, Vol. 6, Issue 6
  • DOI: 10.1002/aenm.201501636

Amphiphilic Surface Modification of Hollow Carbon Nanofibers for Improved Cycle Life of Lithium Sulfur Batteries
journal, February 2013

  • Zheng, Guangyuan; Zhang, Qianfan; Cha, Judy J.
  • Nano Letters, Vol. 13, Issue 3, p. 1265-1270
  • DOI: 10.1021/nl304795g

Graphene-Based Three-Dimensional Hierarchical Sandwich-type Architecture for High-Performance Li/S Batteries
journal, September 2013

  • Chen, Renjie; Zhao, Teng; Lu, Jun
  • Nano Letters, Vol. 13, Issue 10
  • DOI: 10.1021/nl4016683

Simultaneous optimization of surface chemistry and pore morphology of 3D graphene-sulfur cathode via multi-ion modulation
journal, July 2016


Freeze-Dried Sulfur–Graphene Oxide–Carbon Nanotube Nanocomposite for High Sulfur-Loading Lithium/Sulfur Cells
journal, October 2017


MoN Supported on Graphene as a Bifunctional Interlayer for Advanced Li‐S Batteries
journal, November 2019


Porous carbon nanofiber–sulfur composite electrodes for lithium/sulfur cells
journal, January 2011

  • Ji, Liwen; Rao, Mumin; Aloni, Shaul
  • Energy & Environmental Science, Vol. 4, Issue 12, p. 5053-5059
  • DOI: 10.1039/c1ee02256c

Understanding the electrochemical reaction mechanism of VS 2 nanosheets in lithium-ion cells by multiple in situ and ex situ x-ray spectroscopy
journal, September 2018

  • Zhang, Liang; Sun, Dan; Wei, Qiulong
  • Journal of Physics D: Applied Physics, Vol. 51, Issue 49
  • DOI: 10.1088/1361-6463/aadde7

High “C” rate Li-S cathodes: sulfur imbibed bimodal porous carbons
journal, January 2011

  • He, Guang; Ji, Xiulei; Nazar, Linda
  • Energy & Environmental Science, Vol. 4, Issue 8
  • DOI: 10.1039/c1ee01219c

Balancing surface adsorption and diffusion of lithium-polysulfides on nonconductive oxides for lithium–sulfur battery design
journal, April 2016

  • Tao, Xinyong; Wang, Jianguo; Liu, Chong
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms11203

Challenges in the development of advanced Li-ion batteries: a review
journal, January 2011

  • Etacheri, Vinodkumar; Marom, Rotem; Elazari, Ran
  • Energy & Environmental Science, Vol. 4, Issue 9
  • DOI: 10.1039/c1ee01598b

Graphene Oxide as a Sulfur Immobilizer in High Performance Lithium/Sulfur Cells
journal, November 2011

  • Ji, Liwen; Rao, Mumin; Zheng, Haimei
  • Journal of the American Chemical Society, Vol. 133, Issue 46, p. 18522-18525
  • DOI: 10.1021/ja206955k

Sulfur Speciation in Li–S Batteries Determined by Operando X-ray Absorption Spectroscopy
journal, September 2013

  • Cuisinier, Marine; Cabelguen, Pierre-Etienne; Evers, Scott
  • The Journal of Physical Chemistry Letters, Vol. 4, Issue 19
  • DOI: 10.1021/jz401763d

High-Rate, Ultralong Cycle-Life Lithium/Sulfur Batteries Enabled by Nitrogen-Doped Graphene
journal, July 2014

  • Qiu, Yongcai; Li, Wanfei; Zhao, Wen
  • Nano Letters, Vol. 14, Issue 8
  • DOI: 10.1021/nl5020475

A highly efficient polysulfide mediator for lithium–sulfur batteries
journal, January 2015

  • Liang, Xiao; Hart, Connor; Pang, Quan
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms6682

Hollow Carbon Nanofiber-Encapsulated Sulfur Cathodes for High Specific Capacity Rechargeable Lithium Batteries
journal, October 2011

  • Zheng, Guangyuan; Yang, Yuan; Cha, Judy J.
  • Nano Letters, Vol. 11, Issue 10, p. 4462-4467
  • DOI: 10.1021/nl2027684

Facile Solid-State Growth of 3D Well-Interconnected Nitrogen-Rich Carbon Nanotube-Graphene Hybrid Architectures for Lithium-Sulfur Batteries
journal, December 2015

  • Ding, Yuan-Li; Kopold, Peter; Hahn, Kersten
  • Advanced Functional Materials, Vol. 26, Issue 7
  • DOI: 10.1002/adfm.201504294

Tungsten Disulfide Catalysts Supported on a Carbon Cloth Interlayer for High Performance Li-S Battery
journal, January 2017

  • Park, Jungjin; Yu, Byeong-Chul; Park, Joong Sun
  • Advanced Energy Materials, Vol. 7, Issue 11
  • DOI: 10.1002/aenm.201602567

Advances in Li–S batteries
journal, January 2010

  • Ji, Xiulei; Nazar, Linda F.
  • Journal of Materials Chemistry, Vol. 20, Issue 44, p. 9821-9826
  • DOI: 10.1039/b925751a

SnO 2 /Reduced Graphene Oxide Interlayer Mitigating the Shuttle Effect of Li–S Batteries
journal, May 2018

  • Hu, Nana; Lv, Xingshuai; Dai, Ying
  • ACS Applied Materials & Interfaces, Vol. 10, Issue 22
  • DOI: 10.1021/acsami.8b03255

Dense integration of graphene and sulfur through the soft approach for compact lithium/sulfur battery cathode
journal, March 2015


Effective electrostatic confinement of polysulfides in lithium/sulfur batteries by a functional binder
journal, October 2017


X-ray Absorption Spectra of Dissolved Polysulfides in Lithium–Sulfur Batteries from First-Principles
journal, April 2014

  • Pascal, Tod A.; Wujcik, Kevin H.; Velasco-Velez, Juan
  • The Journal of Physical Chemistry Letters, Vol. 5, Issue 9
  • DOI: 10.1021/jz500260s

Liquid electrolyte lithium/sulfur battery: Fundamental chemistry, problems, and solutions
journal, June 2013


Nucleophilic substitution between polysulfides and binders unexpectedly stabilizing lithium sulfur battery
journal, August 2017


Direct observation of lithium polysulfides in lithium–sulfur batteries using operando X-ray diffraction
journal, May 2017


Catalytic oxidation of Li 2 S on the surface of metal sulfides for Li−S batteries
journal, January 2017

  • Zhou, Guangmin; Tian, Hongzhen; Jin, Yang
  • Proceedings of the National Academy of Sciences, Vol. 114, Issue 5
  • DOI: 10.1073/pnas.1615837114

Li–O2 and Li–S batteries with high energy storage
journal, January 2012

  • Bruce, Peter G.; Freunberger, Stefan A.; Hardwick, Laurence J.
  • Nature Materials, Vol. 11, Issue 1, p. 19-29
  • DOI: 10.1038/nmat3191

A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries
journal, May 2009

  • Ji, Xiulei; Lee, Kyu Tae; Nazar, Linda F.
  • Nature Materials, Vol. 8, Issue 6, p. 500-506
  • DOI: 10.1038/nmat2460

Sulfur-graphene composite for rechargeable lithium batteries
journal, August 2011


MnS decorated N/S codoped 3D graphene which used as cathode of the lithium-sulfur battery
journal, March 2018