DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Fundamental Processes and Practical Considerations of Lead Chalcogenide Mesocrystals Formed via Self-Assembly and Directed Attachment of Nanocrystals at a Fluid Interface

Abstract

Significant advances in the synthesis and processing of colloidal nanocrystals have given scientists and engineers access to a vast library of building blocks with precisely defined size, shape, and composition. These materials have inspired exciting prospects to enable bottom-up fabrication of programmable materials with properties by design. Successfully assembling and connecting the building blocks into superstructures in which constituent nanocrystals can purposefully interact requires robust understanding of and control over a complex interplay of dynamic physicochemical processes. Fluid interfaces provide an advantageous experimental workbench to both probe and control these processes. Despite the ostensible simplicity of fabricating nanocrystal assemblies at a fluid interface, sensitivity to processing conditions and limited reproducibility have underscored the complexity of this process. In situ studies have provided mechanistic insights into the competing dynamics of key subprocesses including solvent spreading and evaporation, superlattice formation, ligand detachment kinetics, and nanocrystal attachment. Understanding how these subprocesses influence the complex choreography of self-assembly, structure transformation, and oriented attachment processes presents a rich research challenge. In this context, we present a detailed methodology for self-assembly and attachment of lead chalcogenide nanocrystals at a liquid–gas interface as a model system for the fabrication of mono- and multilayer cubic connected superlattices. Wemore » discuss key experimental parameters such as the characteristics of the building blocks and processing conditions and detailed steps from colloidal nanocrystal injection to superlattice transfer. Furthermore, we hope that this Methods/Protocols paper will provide guidance for future advances in the exciting path toward bringing the prospect of nanocrystal-based programmable materials to fruition.« less

Authors:
ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [1]; ORCiD logo [1]
  1. Cornell Univ., Ithaca, NY (United States)
  2. Cornell Univ., Ithaca, NY (United States); IST Austria, Klosterneuburg (Austria)
Publication Date:
Research Org.:
Cornell Univ., Ithaca, NY (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1836502
Grant/Contract Number:  
SC0018026
Resource Type:
Accepted Manuscript
Journal Name:
Chemistry of Materials
Additional Journal Information:
Journal Volume: 33; Journal Issue: 24; Journal ID: ISSN 0897-4756
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; Self organization; Interfaces; Ligands; Evaporation; Solvents

Citation Formats

Cimada daSilva, Jessica, Balazs, Daniel M., Dunbar, Tyler A., and Hanrath, Tobias. Fundamental Processes and Practical Considerations of Lead Chalcogenide Mesocrystals Formed via Self-Assembly and Directed Attachment of Nanocrystals at a Fluid Interface. United States: N. p., 2021. Web. doi:10.1021/acs.chemmater.1c02910.
Cimada daSilva, Jessica, Balazs, Daniel M., Dunbar, Tyler A., & Hanrath, Tobias. Fundamental Processes and Practical Considerations of Lead Chalcogenide Mesocrystals Formed via Self-Assembly and Directed Attachment of Nanocrystals at a Fluid Interface. United States. https://doi.org/10.1021/acs.chemmater.1c02910
Cimada daSilva, Jessica, Balazs, Daniel M., Dunbar, Tyler A., and Hanrath, Tobias. Thu . "Fundamental Processes and Practical Considerations of Lead Chalcogenide Mesocrystals Formed via Self-Assembly and Directed Attachment of Nanocrystals at a Fluid Interface". United States. https://doi.org/10.1021/acs.chemmater.1c02910. https://www.osti.gov/servlets/purl/1836502.
@article{osti_1836502,
title = {Fundamental Processes and Practical Considerations of Lead Chalcogenide Mesocrystals Formed via Self-Assembly and Directed Attachment of Nanocrystals at a Fluid Interface},
author = {Cimada daSilva, Jessica and Balazs, Daniel M. and Dunbar, Tyler A. and Hanrath, Tobias},
abstractNote = {Significant advances in the synthesis and processing of colloidal nanocrystals have given scientists and engineers access to a vast library of building blocks with precisely defined size, shape, and composition. These materials have inspired exciting prospects to enable bottom-up fabrication of programmable materials with properties by design. Successfully assembling and connecting the building blocks into superstructures in which constituent nanocrystals can purposefully interact requires robust understanding of and control over a complex interplay of dynamic physicochemical processes. Fluid interfaces provide an advantageous experimental workbench to both probe and control these processes. Despite the ostensible simplicity of fabricating nanocrystal assemblies at a fluid interface, sensitivity to processing conditions and limited reproducibility have underscored the complexity of this process. In situ studies have provided mechanistic insights into the competing dynamics of key subprocesses including solvent spreading and evaporation, superlattice formation, ligand detachment kinetics, and nanocrystal attachment. Understanding how these subprocesses influence the complex choreography of self-assembly, structure transformation, and oriented attachment processes presents a rich research challenge. In this context, we present a detailed methodology for self-assembly and attachment of lead chalcogenide nanocrystals at a liquid–gas interface as a model system for the fabrication of mono- and multilayer cubic connected superlattices. We discuss key experimental parameters such as the characteristics of the building blocks and processing conditions and detailed steps from colloidal nanocrystal injection to superlattice transfer. Furthermore, we hope that this Methods/Protocols paper will provide guidance for future advances in the exciting path toward bringing the prospect of nanocrystal-based programmable materials to fruition.},
doi = {10.1021/acs.chemmater.1c02910},
journal = {Chemistry of Materials},
number = 24,
volume = 33,
place = {United States},
year = {Thu Dec 16 00:00:00 EST 2021},
month = {Thu Dec 16 00:00:00 EST 2021}
}

Works referenced in this record:

Au−PbS Core−Shell Nanocrystals: Plasmonic Absorption Enhancement and Electrical Doping via Intra-particle Charge Transfer
journal, July 2008

  • Lee, Jong-Soo; Shevchenko, Elena V.; Talapin, Dmitri V.
  • Journal of the American Chemical Society, Vol. 130, Issue 30
  • DOI: 10.1021/ja802890f

In situ study of the formation mechanism of two-dimensional superlattices from PbSe nanocrystals
journal, September 2016

  • Geuchies, Jaco J.; van Overbeek, Carlo; Evers, Wiel H.
  • Nature Materials, Vol. 15, Issue 12
  • DOI: 10.1038/nmat4746

Predicting Nanocrystal Shape through Consideration of Surface-Ligand Interactions
journal, February 2012

  • Bealing, Clive R.; Baumgardner, William J.; Choi, Joshua J.
  • ACS Nano, Vol. 6, Issue 3
  • DOI: 10.1021/nn3000466

Self-assembly: From nanoscale to microscale colloids
journal, January 2004

  • Glotzer, S. C.; Solomon, M. J.; Kotov, N. A.
  • AIChE Journal, Vol. 50, Issue 12
  • DOI: 10.1002/aic.10413

Nanoparticles at fluid interfaces: Exploiting capping ligands to control adsorption, stability and dynamics
journal, December 2012

  • Garbin, Valeria; Crocker, John C.; Stebe, Kathleen J.
  • Journal of Colloid and Interface Science, Vol. 387, Issue 1
  • DOI: 10.1016/j.jcis.2012.07.047

Interfacial Self-Assembly and Oriented Attachment in the Family of PbX (X = S, Se, Te) Nanocrystals
journal, May 2018

  • van Overbeek, Carlo; Peters, Joep L.; van Rossum, Susan A. P.
  • The Journal of Physical Chemistry C, Vol. 122, Issue 23
  • DOI: 10.1021/acs.jpcc.8b01876

Building devices from colloidal quantum dots
journal, August 2016


Colloidal Synthesis and Self-Assembly of CoPt 3 Nanocrystals
journal, September 2002

  • Shevchenko, Elena V.; Talapin, Dmitri V.; Rogach, Andrey L.
  • Journal of the American Chemical Society, Vol. 124, Issue 38
  • DOI: 10.1021/ja025976l

Air-Stable CuInSe 2 Nanocrystal Transistors and Circuits via Post-Deposition Cation Exchange
journal, February 2019


Impact of Size Dispersity, Ligand Coverage, and Ligand Length on the Structure of PbS Nanocrystal Superlattices
journal, January 2018


Optical properties of PbS nanocrystal quantum dots at ambient and elevated pressure
journal, January 2014

  • Bian, Kaifu; Richards, Benjamin T.; Yang, Hanqing
  • Phys. Chem. Chem. Phys., Vol. 16, Issue 18
  • DOI: 10.1039/C4CP00395K

Long-range resonance transfer of electronic excitations in close-packed CdSe quantum-dot solids
journal, September 1996


Hybrid Growth Modes of PbSe Nanocrystals with Oriented Attachment and Grain Boundary Migration
journal, February 2019


High charge mobility in two-dimensional percolative networks of PbSe quantum dots connected by atomic bonds
journal, September 2015

  • Evers, Wiel H.; Schins, Juleon M.; Aerts, Michiel
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms9195

A Generalized Ligand-Exchange Strategy Enabling Sequential Surface Functionalization of Colloidal Nanocrystals
journal, February 2011

  • Dong, Angang; Ye, Xingchen; Chen, Jun
  • Journal of the American Chemical Society, Vol. 133, Issue 4, p. 998-1006
  • DOI: 10.1021/ja108948z

Interface-Induced Nucleation, Orientational Alignment and Symmetry Transformations in Nanocube Superlattices
journal, January 2012

  • Choi, Joshua J.; Bian, Kaifu; Baumgardner, William J.
  • Nano Letters, Vol. 12, Issue 9
  • DOI: 10.1021/nl3026289

Colloidal Nanocrystals with Inorganic Halide, Pseudohalide, and Halometallate Ligands
journal, June 2014

  • Zhang, Hao; Jang, Jaeyoung; Liu, Wenyong
  • ACS Nano, Vol. 8, Issue 7
  • DOI: 10.1021/nn502470v

Charge transport and localization in atomically coherent quantum dot solids
journal, February 2016

  • Whitham, Kevin; Yang, Jun; Savitzky, Benjamin H.
  • Nature Materials, Vol. 15, Issue 5
  • DOI: 10.1038/nmat4576

Hybrid Oleate–Iodide Ligand Shell for Air-Stable PbSe Nanocrystals and Superstructures
journal, July 2019


Self-Assembly at All Scales
journal, March 2002

  • Whitesides, George M.; Grzybowski, Bartosz
  • Science, Vol. 295, Issue 5564, p. 2418-2421
  • DOI: 10.1126/science.1070821

Confined-but-Connected Quantum Solids via Controlled Ligand Displacement
journal, June 2013

  • Baumgardner, William J.; Whitham, Kevin; Hanrath, Tobias
  • Nano Letters, Vol. 13, Issue 7
  • DOI: 10.1021/nl401298s

Nanomaterials of high surface energy with exceptional properties in catalysis and energy storage
journal, January 2011

  • Zhou, Zhi-You; Tian, Na; Li, Jun-Tao
  • Chemical Society Reviews, Vol. 40, Issue 7
  • DOI: 10.1039/c0cs00176g

Short-Chain Alcohols Strip X-Type Ligands and Quench the Luminescence of PbSe and CdSe Quantum Dots, Acetonitrile Does Not
journal, December 2012

  • Hassinen, Antti; Moreels, Iwan; De Nolf, Kim
  • Journal of the American Chemical Society, Vol. 134, Issue 51
  • DOI: 10.1021/ja308861d

Sizing Curve, Absorption Coefficient, Surface Chemistry, and Aliphatic Chain Structure of PbTe Nanocrystals
journal, February 2019


Langmuir−Schaefer Deposition of Quantum Dot Multilayers
journal, June 2010

  • Lambert, Karel; Čapek, Richard K.; Bodnarchuk, Maryna I.
  • Langmuir, Vol. 26, Issue 11
  • DOI: 10.1021/la904474h

The Role of Dimer Formation in the Nucleation of Superlattice Transformations and Its Impact on Disorder
journal, August 2020

  • Chen, Isaiah Y.; Cimada daSilva, Jessica; Balazs, Daniel M.
  • ACS Nano, Vol. 14, Issue 9
  • DOI: 10.1021/acsnano.0c03800

Kinetically driven self assembly of highly ordered nanoparticle monolayers
journal, March 2006

  • Bigioni, Terry P.; Lin, Xiao-Min; Nguyen, Toan T.
  • Nature Materials, Vol. 5, Issue 4
  • DOI: 10.1038/nmat1611

2D-Arrays of Nanoparticles as Model Catalysts
journal, November 2014


Kinetics of the self-assembly of nanocrystal superlattices measured by real-time in situ X-ray scattering
journal, March 2016

  • Weidman, Mark C.; Smilgies, Detlef-M.; Tisdale, William A.
  • Nature Materials, Vol. 15, Issue 7
  • DOI: 10.1038/nmat4600

Semiconductor Quantum Dots and Quantum Dot Arrays and Applications of Multiple Exciton Generation to Third-Generation Photovoltaic Solar Cells
journal, November 2010

  • Nozik, A. J.; Beard, M. C.; Luther, J. M.
  • Chemical Reviews, Vol. 110, Issue 11
  • DOI: 10.1021/cr900289f

All-Inorganic Colloidal Quantum Dot Photovoltaics Employing Solution-Phase Halide Passivation
journal, September 2012


Nanostructured Thermoelectrics: Big Efficiency Gains from Small Features
journal, July 2010

  • Vineis, Christopher J.; Shakouri, Ali; Majumdar, Arun
  • Advanced Materials, Vol. 22, Issue 36, p. 3970-3980
  • DOI: 10.1002/adma.201000839

Long-range orientation and atomic attachment of nanocrystals in 2D honeycomb superlattices
journal, May 2014


Mechanistic Insights into Superlattice Transformation at a Single Nanocrystal Level Using Nanobeam Electron Diffraction
journal, June 2020


Electron Mobility of 24 cm 2 V −1 s −1 in PbSe Colloidal-Quantum-Dot Superlattices
journal, August 2018

  • Balazs, Daniel M.; Matysiak, Bartosz M.; Momand, Jamo
  • Advanced Materials, Vol. 30, Issue 38
  • DOI: 10.1002/adma.201802265

Unravelling three-dimensional adsorption geometries of PbSe nanocrystal monolayers at a liquid-air interface
journal, March 2020

  • Geuchies, Jaco J.; Soligno, Giuseppe; Geraffy, Ellenor
  • Communications Chemistry, Vol. 3, Issue 1
  • DOI: 10.1038/s42004-020-0275-4

Low-Dimensional Semiconductor Superlattices Formed by Geometric Control over Nanocrystal Attachment
journal, November 2012

  • Evers, Wiel H.; Goris, Bart; Bals, Sara
  • Nano Letters, Vol. 13, Issue 6
  • DOI: 10.1021/nl303322k

Orientational Order in Self-Assembled Nanocrystal Superlattices
journal, January 2019

  • Fan, Zhaochuan; Grünwald, Michael
  • Journal of the American Chemical Society, Vol. 141, Issue 5
  • DOI: 10.1021/jacs.8b10752

Lead-Chalcogenide Colloidal-Quantum-Dot Solids: Novel Assembly Methods, Electronic Structure Control, and Application Prospects
journal, June 2018


Engineering the surface chemistry of lead chalcogenide nanocrystal solids to enhance carrier mobility and lifetime in optoelectronic devices
journal, January 2017

  • Oh, S. J.; Straus, D. B.; Zhao, T.
  • Chemical Communications, Vol. 53, Issue 4
  • DOI: 10.1039/C6CC07916D

Counterion-Mediated Ligand Exchange for PbS Colloidal Quantum Dot Superlattices
journal, October 2015


The Strongest Particle: Size-Dependent Elastic Strength and Debye Temperature of PbS Nanocrystals
journal, October 2014

  • Bian, Kaifu; Bassett, William; Wang, Zhongwu
  • The Journal of Physical Chemistry Letters, Vol. 5, Issue 21
  • DOI: 10.1021/jz501797y

Hierarchical supercrystalline nanocomposites through the self-assembly of organically-modified ceramic nanoparticles
journal, March 2019


Reducing charge trapping in PbS colloidal quantum dot solids
journal, March 2014

  • Balazs, D. M.; Nugraha, M. I.; Bisri, S. Z.
  • Applied Physics Letters, Vol. 104, Issue 11
  • DOI: 10.1063/1.4869216

Ligand Versatility in Supercrystal Formation
journal, September 2017

  • Reichhelm, Annett; Haubold, Danny; Eychmüller, Alexander
  • Advanced Functional Materials, Vol. 27, Issue 39
  • DOI: 10.1002/adfm.201700361

Site-Specific Ligand Interactions Favor the Tetragonal Distortion of PbS Nanocrystal Superlattices
journal, August 2016

  • Novák, Jiřı́; Banerjee, Rupak; Kornowski, Andreas
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 34
  • DOI: 10.1021/acsami.6b06989

Prospects for thermoelectricity in quantum dot hybrid arrays
journal, December 2015


An Implicit-Solvent Model for the Interfacial Configuration of Colloidal Nanoparticles and Application to the Self-Assembly of Truncated Cubes
journal, July 2020


Lead Halide Perovskites and Other Metal Halide Complexes As Inorganic Capping Ligands for Colloidal Nanocrystals
journal, April 2014

  • Dirin, Dmitry N.; Dreyfuss, Sébastien; Bodnarchuk, Maryna I.
  • Journal of the American Chemical Society, Vol. 136, Issue 18
  • DOI: 10.1021/ja5006288

Size-Dependent Extinction Coefficients of PbS Quantum Dots
journal, August 2006

  • Cademartiri, Ludovico; Montanari, Erica; Calestani, Gianluca
  • Journal of the American Chemical Society, Vol. 128, Issue 31
  • DOI: 10.1021/ja063166u

Properties and emerging applications of self-assembled structures made from inorganic nanoparticles
journal, December 2009

  • Nie, Zhihong; Petukhova, Alla; Kumacheva, Eugenia
  • Nature Nanotechnology, Vol. 5, Issue 1
  • DOI: 10.1038/nnano.2009.453

Self-Assembly of Colloidal Nanocrystals: From Intricate Structures to Functional Materials
journal, August 2016


Binary nanocrystal superlattice membranes self-assembled at the liquid–air interface
journal, July 2010

  • Dong, Angang; Chen, Jun; Vora, Patrick M.
  • Nature, Vol. 466, Issue 7305
  • DOI: 10.1038/nature09188

Energetic and Entropic Contributions to Self-Assembly of Binary Nanocrystal Superlattices: Temperature as the Structure-Directing Factor
journal, September 2010

  • Bodnarchuk, Maryna I.; Kovalenko, Maksym V.; Heiss, Wolfgang
  • Journal of the American Chemical Society, Vol. 132, Issue 34
  • DOI: 10.1021/ja103083q

Redefining the Experimental and Methods Sections
journal, May 2019


Nanoparticles at fluid interfaces
journal, September 2007


Structural diversity in binary nanoparticle superlattices
journal, January 2006

  • Shevchenko, Elena V.; Talapin, Dmitri V.; Kotov, Nicholas A.
  • Nature, Vol. 439, Issue 7072, p. 55-59
  • DOI: 10.1038/nature04414

Ultrabright PbSe Magic-sized Clusters
journal, September 2008

  • Evans, Christopher M.; Guo, Li; Peterson, Jeffrey J.
  • Nano Letters, Vol. 8, Issue 9
  • DOI: 10.1021/nl801685a

Mapping the Topology of PbS Nanocrystals through Displacement Isotherms of Surface-Bound Metal Oleate Complexes
journal, March 2020


A Solution NMR Toolbox for Characterizing the Surface Chemistry of Colloidal Nanocrystals
journal, February 2013

  • Hens, Zeger; Martins, José C.
  • Chemistry of Materials, Vol. 25, Issue 8
  • DOI: 10.1021/cm303361s

The Dynamic Organic/Inorganic Interface of Colloidal PbS Quantum Dots
journal, April 2016

  • Grisorio, Roberto; Debellis, Doriana; Suranna, Gian Paolo
  • Angewandte Chemie International Edition, Vol. 55, Issue 23
  • DOI: 10.1002/anie.201511174

Self-Organization of CdSe Nanocrystallites into Three-Dimensional Quantum Dot Superlattices
journal, November 1995


Prospects of Nanoscience with Nanocrystals
journal, January 2015

  • Kovalenko, Maksym V.; Manna, Liberato; Cabot, Andreu
  • ACS Nano, Vol. 9, Issue 2
  • DOI: 10.1021/nn506223h

Coupled Dynamics of Colloidal Nanoparticle Spreading and Self-Assembly at a Fluid–Fluid Interface
journal, May 2020


Controlling Nanocrystal Superlattice Symmetry and Shape-Anisotropic Interactions through Variable Ligand Surface Coverage
journal, March 2011

  • Choi, Joshua J.; Bealing, Clive R.; Bian, Kaifu
  • Journal of the American Chemical Society, Vol. 133, Issue 9
  • DOI: 10.1021/ja110454b

Colloidal PbS Nanocrystals with Size-Tunable Near-Infrared Emission: Observation of Post-Synthesis Self-Narrowing of the Particle Size Distribution
journal, November 2003

  • Hines, M. A.; Scholes, G. D.
  • Advanced Materials, Vol. 15, Issue 21, p. 1844-1849
  • DOI: 10.1002/adma.200305395

Understanding the forces acting in self-assembly and the implications for constructing three-dimensional (3D) supercrystals
journal, August 2015


Size-Dependent Optical Properties of Colloidal PbS Quantum Dots
journal, September 2009

  • Moreels, Iwan; Lambert, Karel; Smeets, Dries
  • ACS Nano, Vol. 3, Issue 10
  • DOI: 10.1021/nn900863a

Glycol ether additives control the size of PbS nanocrystals at reaction completion
journal, January 2020

  • Green, Philippe B.; Wang, Zhibo; Sohn, Philip
  • Journal of Materials Chemistry C, Vol. 8, Issue 35
  • DOI: 10.1039/D0TC03252B

Atomic models for anionic ligand passivation of cation-rich surfaces of IV–VI, II–VI, and III–V colloidal quantum dots
journal, January 2017

  • Ko, Jae-Hyeon; Yoo, Dongsuk; Kim, Yong-Hyun
  • Chemical Communications, Vol. 53, Issue 2
  • DOI: 10.1039/C6CC07933D

Successive Ionic Layer Absorption and Reaction for Postassembly Control over Inorganic Interdot Bonds in Long-Range Ordered Nanocrystal Films
journal, April 2017

  • Treml, Benjamin E.; Savitzky, Benjamin H.; Tirmzi, Ali M.
  • ACS Applied Materials & Interfaces, Vol. 9, Issue 15
  • DOI: 10.1021/acsami.7b01588

Steric-Hindrance-Driven Shape Transition in PbS Quantum Dots: Understanding Size-Dependent Stability
journal, March 2013

  • Choi, Hyekyoung; Ko, Jae-Hyeon; Kim, Yong-Hyun
  • Journal of the American Chemical Society, Vol. 135, Issue 14
  • DOI: 10.1021/ja400948t

Chemically Triggered Formation of Two-Dimensional Epitaxial Quantum Dot Superlattices
journal, July 2016


The Importance of Unbound Ligand in Nanocrystal Superlattice Formation
journal, May 2020

  • Winslow, Samuel W.; Swan, James W.; Tisdale, William A.
  • Journal of the American Chemical Society
  • DOI: 10.1021/jacs.0c01809

Large-Area Ordered Superlattices from Magnetic Wüstite/Cobalt Ferrite Core/Shell Nanocrystals by Doctor Blade Casting
journal, December 2009

  • Bodnarchuk, Maryna I.; Kovalenko, Maksym V.; Pichler, Stefan
  • ACS Nano, Vol. 4, Issue 1
  • DOI: 10.1021/nn901284f

Propagation of Structural Disorder in Epitaxially Connected Quantum Dot Solids from Atomic to Micron Scale
journal, August 2016


Ligand Exchange and the Stoichiometry of Metal Chalcogenide Nanocrystals: Spectroscopic Observation of Facile Metal-Carboxylate Displacement and Binding
journal, November 2013

  • Anderson, Nicholas C.; Hendricks, Mark P.; Choi, Joshua J.
  • Journal of the American Chemical Society, Vol. 135, Issue 49, p. 18536-18548
  • DOI: 10.1021/ja4086758

Formation of Epitaxially Connected Quantum Dot Solids: Nucleation and Coherent Phase Transition
journal, May 2017


Hydroxylation of the surface of PbS nanocrystals passivated with oleic acid
journal, May 2014


Directional Carrier Transfer in Strongly Coupled Binary Nanocrystal Superlattice Films Formed by Assembly and in Situ Ligand Exchange at a Liquid–Air Interface
journal, February 2017

  • Wu, Yaoting; Li, Siming; Gogotsi, Natalie
  • The Journal of Physical Chemistry C, Vol. 121, Issue 8
  • DOI: 10.1021/acs.jpcc.6b12327

Monitoring Self-Assembly and Ligand Exchange of PbS Nanocrystal Superlattices at the Liquid/Air Interface in Real Time
journal, January 2018

  • Maiti, Santanu; André, Alexander; Banerjee, Rupak
  • The Journal of Physical Chemistry Letters, Vol. 9, Issue 4
  • DOI: 10.1021/acs.jpclett.7b03278

Chalcogenidometallate Clusters as Surface Ligands for PbSe Nanocrystal Field-Effect Transistors
journal, February 2014

  • Ocier, Christian R.; Whitham, Kevin; Hanrath, Tobias
  • The Journal of Physical Chemistry C, Vol. 118, Issue 7
  • DOI: 10.1021/jp406369a

Superlattice growth and rearrangement during evaporation-induced nanoparticle self-assembly
journal, June 2017


Collective topo-epitaxy in the self-assembly of a 3D quantum dot superlattice
journal, October 2019


Entropic, Enthalpic, and Kinetic Aspects of Interfacial Nanocrystal Superlattice Assembly and Attachment
journal, December 2017


Photovoltaic Performance of Ultrasmall PbSe Quantum Dots
journal, September 2011

  • Ma, Wanli; Swisher, Sarah L.; Ewers, Trevor
  • ACS Nano, Vol. 5, Issue 10
  • DOI: 10.1021/nn202786g

Many-Body Effects in Nanocrystal Superlattices: Departure from Sphere Packing Explains Stability of Binary Phases
journal, March 2015

  • Boles, Michael A.; Talapin, Dmitri V.
  • Journal of the American Chemical Society, Vol. 137, Issue 13
  • DOI: 10.1021/jacs.5b00839

Mesocrystals: structural and morphogenetic aspects
journal, January 2016

  • Sturm (née Rosseeva), Elena V.; Cölfen, Helmut
  • Chemical Society Reviews, Vol. 45, Issue 21
  • DOI: 10.1039/C6CS00208K

Hierarchical Materials Design by Pattern Transfer Printing of Self-Assembled Binary Nanocrystal Superlattices
journal, February 2017


Opportunities for mesoscale science
journal, November 2012


Electronic structure of atomically coherent square semiconductor superlattices with dimensionality below two
journal, September 2013


Charge transport in strongly coupled quantum dot solids
journal, November 2015

  • Kagan, Cherie R.; Murray, Christopher B.
  • Nature Nanotechnology, Vol. 10, Issue 12
  • DOI: 10.1038/nnano.2015.247

The effect of water on colloidal quantum dot solar cells
journal, July 2021


The Statistical Mechanics of Dynamic Pathways to Self-Assembly
journal, April 2015


Inverse Opal Nanocrystal Superlattice Films
journal, September 2004

  • Saunders, Aaron E.; Shah, Parag S.; Sigman, Michael B.
  • Nano Letters, Vol. 4, Issue 10
  • DOI: 10.1021/nl048846e

Prospects of Colloidal Nanocrystals for Electronic and Optoelectronic Applications
journal, January 2010

  • Talapin, Dmitri V.; Lee, Jong-Soo; Kovalenko, Maksym V.
  • Chemical Reviews, Vol. 110, Issue 1
  • DOI: 10.1021/cr900137k

Dirac Cones, Topological Edge States, and Nontrivial Flat Bands in Two-Dimensional Semiconductors with a Honeycomb Nanogeometry
journal, January 2014


Ligand-Induced Shape Transformation of PbSe Nanocrystals
journal, April 2017


Band-like transport, high electron mobility and high photoconductivity in all-inorganic nanocrystal arrays
journal, April 2011

  • Lee, Jong-Soo; Kovalenko, Maksym V.; Huang, Jing
  • Nature Nanotechnology, Vol. 6, Issue 6
  • DOI: 10.1038/nnano.2011.46

Mesophase Formation Stabilizes High-Purity Magic-Sized Clusters
journal, January 2018

  • Nevers, Douglas R.; Williamson, Curtis B.; Savitzky, Benjamin H.
  • Journal of the American Chemical Society, Vol. 140, Issue 10
  • DOI: 10.1021/jacs.7b12175

Electronically Coupled Nanocrystal Superlattice Films by in Situ Ligand Exchange at the Liquid–Air Interface
journal, November 2013

  • Dong, Angang; Jiao, Yucong; Milliron, Delia J.
  • ACS Nano, Vol. 7, Issue 12
  • DOI: 10.1021/nn404566b

Dynamic deformability of individual PbSe nanocrystals during superlattice phase transitions
journal, June 2019