DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Imaging Supramolecular Morphogenesis with Confocal Laser Scanning Microscopy at Elevated Temperatures

Abstract

The morphogenesis of supramolecular assemblies is a highly dynamic process that has only recently been recognized, and our understanding of this phenomenon will require imaging techniques capable of crossing scales. Shape transformations depend both on the complex energy landscapes of supramolecular systems and the kinetically controlled pathways that define their structures and functions. We report here the use of confocal laser scanning microscopy coupled with a custom-designed variable-temperature sample stage that enables in situ observation of such shape changes. The submicrometer resolution of this technique allows for real-time observation of the nanostructures in the native liquid environments in which they transform with thermal energy. We use this technique to study the temperature-dependent morphogenic behavior of peptide amphiphile nanofibers and photocatalytic chromophore amphiphile nanoribbons. The variable-temperature confocal microscopy technique demonstrated in this work can sample a large volume and provides real-time information on thermally induced morphological changes in the solution.

Authors:
ORCiD logo [1];  [2];  [2]; ORCiD logo [2]; ORCiD logo [3]; ORCiD logo [4]
  1. Northwestern Univ., Chicago, IL (United States)
  2. Northwestern Univ., Evanston, IL (United States)
  3. Northwestern Univ., Chicago, IL (United States); Northwestern Univ., Evanston, IL (United States)
  4. Northwestern Univ., Evanston, IL (United States); Northwestern Univ., Chicago, IL (United States)
Publication Date:
Research Org.:
Energy Frontier Research Centers (EFRC) (United States). Center for Bio-Inspired Energy Science (CBES)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1822879
Alternate Identifier(s):
OSTI ID: 1846637
Grant/Contract Number:  
SC0000989
Resource Type:
Accepted Manuscript
Journal Name:
Nano Letters
Additional Journal Information:
Journal Volume: 20; Journal Issue: 6; Journal ID: ISSN 1530-6984
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; 77 NANOSCIENCE AND NANOTECHNOLOGY; 99 GENERAL AND MISCELLANEOUS; Supramolecular structures and assemblies; Nanofibers; Crystallization; Amphiphiles; Annealing (metallurgy); Supramolecular assembly; Confocal microscopy; In situ microscopy; Nanoribbons; 36 MATERIALS SCIENCE

Citation Formats

Sai, Hiroaki, Lau, Garrett C., Dannenhoffer, Adam J., Chin, Stacey M., D̵ord̵ević, Luka, and Stupp, Samuel I. Imaging Supramolecular Morphogenesis with Confocal Laser Scanning Microscopy at Elevated Temperatures. United States: N. p., 2020. Web. doi:10.1021/acs.nanolett.0c00662.
Sai, Hiroaki, Lau, Garrett C., Dannenhoffer, Adam J., Chin, Stacey M., D̵ord̵ević, Luka, & Stupp, Samuel I. Imaging Supramolecular Morphogenesis with Confocal Laser Scanning Microscopy at Elevated Temperatures. United States. https://doi.org/10.1021/acs.nanolett.0c00662
Sai, Hiroaki, Lau, Garrett C., Dannenhoffer, Adam J., Chin, Stacey M., D̵ord̵ević, Luka, and Stupp, Samuel I. Fri . "Imaging Supramolecular Morphogenesis with Confocal Laser Scanning Microscopy at Elevated Temperatures". United States. https://doi.org/10.1021/acs.nanolett.0c00662. https://www.osti.gov/servlets/purl/1822879.
@article{osti_1822879,
title = {Imaging Supramolecular Morphogenesis with Confocal Laser Scanning Microscopy at Elevated Temperatures},
author = {Sai, Hiroaki and Lau, Garrett C. and Dannenhoffer, Adam J. and Chin, Stacey M. and D̵ord̵ević, Luka and Stupp, Samuel I.},
abstractNote = {The morphogenesis of supramolecular assemblies is a highly dynamic process that has only recently been recognized, and our understanding of this phenomenon will require imaging techniques capable of crossing scales. Shape transformations depend both on the complex energy landscapes of supramolecular systems and the kinetically controlled pathways that define their structures and functions. We report here the use of confocal laser scanning microscopy coupled with a custom-designed variable-temperature sample stage that enables in situ observation of such shape changes. The submicrometer resolution of this technique allows for real-time observation of the nanostructures in the native liquid environments in which they transform with thermal energy. We use this technique to study the temperature-dependent morphogenic behavior of peptide amphiphile nanofibers and photocatalytic chromophore amphiphile nanoribbons. The variable-temperature confocal microscopy technique demonstrated in this work can sample a large volume and provides real-time information on thermally induced morphological changes in the solution.},
doi = {10.1021/acs.nanolett.0c00662},
journal = {Nano Letters},
number = 6,
volume = 20,
place = {United States},
year = {Fri May 08 00:00:00 EDT 2020},
month = {Fri May 08 00:00:00 EDT 2020}
}

Works referenced in this record:

Memoir on inventing the confocal scanning microscope
journal, January 1988


Biological confocal microscopy
journal, April 2002


Mobility measurement by analysis of fluorescence photobleaching recovery kinetics
journal, September 1976


FRAP analysis of binding: proper and fitting
journal, February 2005


Zwischenmolekulare Energiewanderung und Fluoreszenz
journal, January 1948


FRET imaging
journal, October 2003

  • Jares-Erijman, Elizabeth A.; Jovin, Thomas M.
  • Nature Biotechnology, Vol. 21, Issue 11
  • DOI: 10.1038/nbt896

Fluorescent protein FRET: the good, the bad and the ugly
journal, September 2007


Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy
journal, January 1994


Laser-diode-stimulated emission depletion microscopy
journal, May 2003

  • Westphal, V.; Blanca, C. M.; Dyba, M.
  • Applied Physics Letters, Vol. 82, Issue 18
  • DOI: 10.1063/1.1571656

Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM)
journal, August 2006

  • Rust, Michael J.; Bates, Mark; Zhuang, Xiaowei
  • Nature Methods, Vol. 3, Issue 10
  • DOI: 10.1038/nmeth929

Confocal Microscopy: Applications in Materials Science
journal, November 2001


The use of laser scanning confocal microscopy (LSCM) in materials science: USE OF LSCM IN MATERIALS SCIENCE
journal, August 2010


Combined Light Scattering and Laser Scanning Confocal Microscopy Studies of a Polymer Mixture Involving a Percolation-to-Cluster Transition
journal, December 2000

  • Takeno, Hiroyuki; Iwata, Mitsuhiro; Takenaka, Mikihito
  • Macromolecules, Vol. 33, Issue 26
  • DOI: 10.1021/ma001316u

Direct 3-D Imaging of the Evolution of Block Copolymer Microstructures Using Laser Scanning Confocal Microscopy
journal, August 2007

  • Lee, Wonmok; Yoon, Jongseung; Lee, Hyunjung
  • Macromolecules, Vol. 40, Issue 17
  • DOI: 10.1021/ma0711341

First Thermally Responsive Supramolecular Polymer Based on Glycosylated Amino Acid
journal, September 2002

  • Kiyonaka, Shigeki; Sugiyasu, Kazunori; Shinkai, Seiji
  • Journal of the American Chemical Society, Vol. 124, Issue 37
  • DOI: 10.1021/ja027277e

Mechanism of Self-Assembly Process and Seeded Supramolecular Polymerization of Perylene Bisimide Organogelator
journal, February 2015

  • Ogi, Soichiro; Stepanenko, Vladimir; Sugiyasu, Kazunori
  • Journal of the American Chemical Society, Vol. 137, Issue 9
  • DOI: 10.1021/ja511952c

In situ real-time imaging of self-sorted supramolecular nanofibres
journal, May 2016

  • Onogi, Shoji; Shigemitsu, Hajime; Yoshii, Tatsuyuki
  • Nature Chemistry, Vol. 8, Issue 8
  • DOI: 10.1038/nchem.2526

A temperature-controlled stage for laser scanning confocal microscopy and case studies in materials science
journal, December 2018


Five-dimensional imaging of freezing emulsions with solute effects
journal, April 2018


Functional Supramolecular Polymers
journal, February 2012


Pathway complexity in supramolecular polymerization
journal, January 2012

  • Korevaar, Peter A.; George, Subi J.; Markvoort, Albert J.
  • Nature, Vol. 481, Issue 7382
  • DOI: 10.1038/nature10720

Energy landscapes and functions of supramolecular systems
journal, January 2016

  • Tantakitti, Faifan; Boekhoven, Job; Wang, Xin
  • Nature Materials, Vol. 15, Issue 4
  • DOI: 10.1038/nmat4538

Self-Repair of Structure and Bioactivity in a Supramolecular Nanostructure
journal, October 2018


Rheology and Structure of Heat-Treated Pasta Dough: Influence of Water Content and Heating Rate
journal, May 1999

  • Thorvaldsson, Karin; Stading, Mats; Nilsson, Katarina
  • LWT - Food Science and Technology, Vol. 32, Issue 3
  • DOI: 10.1006/fstl.1998.0523

Confocal laser scanning microscopy and image analysis of kinetically trapped phase-separated gelatin/maltodextrin gels
journal, March 1999


Dynamic measurements of β-lactoglobulin structures during aggregation, gel formation and gel break-up in mixed biopolymer systems
journal, September 2002


Error correction of confocal microscopy images for in situ food microstructure evaluation
journal, April 2007


In situ microstructure evaluation during gelation of β-lactoglobulin
journal, January 2009


Determining the gelation temperature of β-lactoglobulin using in situ microscopic imaging
journal, September 2013

  • Woo, Hee-Dong; Moon, Tae-Wha; Gunasekaran, Sundaram
  • Journal of Dairy Science, Vol. 96, Issue 9
  • DOI: 10.3168/jds.2013-6786

Rhodamine B and rhodamine 101 as reference substances for fluorescence quantum yield measurements
journal, July 1980

  • Karstens, T.; Kobs, K.
  • The Journal of Physical Chemistry, Vol. 84, Issue 14
  • DOI: 10.1021/j100451a030

Measuring thermodynamic details of DNA hybridization using fluorescence
journal, March 2011

  • You, Yong; Tataurov, Andrey V.; Owczarzy, Richard
  • Biopolymers, Vol. 95, Issue 7
  • DOI: 10.1002/bip.21615

Fiji: an open-source platform for biological-image analysis
journal, June 2012

  • Schindelin, Johannes; Arganda-Carreras, Ignacio; Frise, Erwin
  • Nature Methods, Vol. 9, Issue 7
  • DOI: 10.1038/nmeth.2019

Fluorescence quantum yields of some rhodamine dyes
journal, December 1982


Self-assembling hydrogel scaffolds for photocatalytic hydrogen production
journal, October 2014

  • Weingarten, Adam S.; Kazantsev, Roman V.; Palmer, Liam C.
  • Nature Chemistry, Vol. 6, Issue 11
  • DOI: 10.1038/nchem.2075

Supramolecular Packing Controls H 2 Photocatalysis in Chromophore Amphiphile Hydrogels
journal, November 2015

  • Weingarten, Adam S.; Kazantsev, Roman V.; Palmer, Liam C.
  • Journal of the American Chemical Society, Vol. 137, Issue 48
  • DOI: 10.1021/jacs.5b10027

Extended-Charge-Transfer Excitons in Crystalline Supramolecular Photocatalytic Scaffolds
journal, September 2016

  • Hestand, Nicholas J.; Kazantsev, Roman V.; Weingarten, Adam S.
  • Journal of the American Chemical Society, Vol. 138, Issue 36
  • DOI: 10.1021/jacs.6b05673

Crystal-Phase Transitions and Photocatalysis in Supramolecular Scaffolds
journal, April 2017

  • Kazantsev, Roman V.; Dannenhoffer, Adam J.; Weingarten, Adam S.
  • Journal of the American Chemical Society, Vol. 139, Issue 17
  • DOI: 10.1021/jacs.6b13156

Molecular Control of Internal Crystallization and Photocatalytic Function in Supramolecular Nanostructures
journal, July 2018


Building two-dimensional materials one row at a time: Avoiding the nucleation barrier
journal, December 2018