DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The Nucleosynthetic Yields of Core-collapse Supernovae: Prospects for the Next Generation of Gamma-Ray Astronomy

Abstract

Though the neutrino-driven convection model for the core-collapse explosion mechanism has received strong support in recent years, there are still many uncertainties in the explosion parameters—such as explosion energy, remnant mass, and end-of-life stellar abundances as initial conditions. Using a broad set of spherically symmetric core-collapse simulations we examine the effects of these key parameters on explosive nucleosynthesis and final explosion yields. The post-bounce temperature and density evolution of zero-age main-sequence 15, 20, and 25 solar mass progenitors are post-processed through the Nucleosynthesis Grid nuclear network to obtain detailed explosive yields. In particular, this study focuses on radio isotopes that are of particular interest to the next generation of gamma-ray astronomical observations: 43K, 47Ca, 44Sc, 47Sc, 48V, 48Cr, 51Cr, 52Mn, 59Fe, 56Co, 57Co, and 57Ni. Furthermore, these nuclides may be key in advancing our understanding of the inner workings of core-collapse supernovae by probing the parameters of the explosion engine. We find that the isotopes that are strong indicators of explosion energy are 43K, 47Ca, 44Sc, 47Sc, and 59Fe, those that are dependent on the progenitor structure are 48V, 51Cr, and 57Co, and those that probe neither are 48Cr, 52Mn, 57Ni, and 56Co. We discuss the prospects of observing thesemore » radionuclides in supernova remnants.« less

Authors:
 [1]; ORCiD logo [2]; ORCiD logo [3]; ORCiD logo [4]; ORCiD logo [5]
  1. Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Center for Theoretical Astrophysics; Stony Brook Univ., NY (United States)
  2. Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Center for Theoretical Astrophysics; Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Univ. of New Mexico, Albuquerque, NM (United States)
  3. Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Center for Theoretical Astrophysics; Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Southern Utah Univ., Cedar City, UT (United States)
  4. Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Center for Theoretical Astrophysics; Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  5. Univ. of Hull (United Kingdom); Hungarian Academy of Sciences, Budapest (Hungary). Konkoly Observatory, Research Centre for Astronomy and Earth Sciences; Joint Inst. for Nuclear Astrophysics (JINA), East Lansing, MI (United States). Center for the Evolution of the Elements (JINA-CEE); NuGrid Collaboration
Publication Date:
Research Org.:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA); National Science Foundation (NSF); National Institutes of Health (NIH); STFC
OSTI Identifier:
1819142
Report Number(s):
LA-UR-19-30411
Journal ID: ISSN 1538-4357; TRN: US2214066
Grant/Contract Number:  
89233218CNA000001; PHY-1607611; PHY-1748958; R25GM067110; PHY-1430152; ST/R000840/1
Resource Type:
Accepted Manuscript
Journal Name:
The Astrophysical Journal (Online)
Additional Journal Information:
Journal Name: The Astrophysical Journal (Online); Journal Volume: 890; Journal Issue: 1; Journal ID: ISSN 1538-4357
Publisher:
IOP Publishing
Country of Publication:
United States
Language:
English
Subject:
79 ASTRONOMY AND ASTROPHYSICS; nucleosynthesis; supernovae; gamma ray

Citation Formats

Andrews, S., Fryer, C., Even, W., Jones, S., and Pignatari, M. The Nucleosynthetic Yields of Core-collapse Supernovae: Prospects for the Next Generation of Gamma-Ray Astronomy. United States: N. p., 2020. Web. doi:10.3847/1538-4357/ab64f8.
Andrews, S., Fryer, C., Even, W., Jones, S., & Pignatari, M. The Nucleosynthetic Yields of Core-collapse Supernovae: Prospects for the Next Generation of Gamma-Ray Astronomy. United States. https://doi.org/10.3847/1538-4357/ab64f8
Andrews, S., Fryer, C., Even, W., Jones, S., and Pignatari, M. Mon . "The Nucleosynthetic Yields of Core-collapse Supernovae: Prospects for the Next Generation of Gamma-Ray Astronomy". United States. https://doi.org/10.3847/1538-4357/ab64f8. https://www.osti.gov/servlets/purl/1819142.
@article{osti_1819142,
title = {The Nucleosynthetic Yields of Core-collapse Supernovae: Prospects for the Next Generation of Gamma-Ray Astronomy},
author = {Andrews, S. and Fryer, C. and Even, W. and Jones, S. and Pignatari, M.},
abstractNote = {Though the neutrino-driven convection model for the core-collapse explosion mechanism has received strong support in recent years, there are still many uncertainties in the explosion parameters—such as explosion energy, remnant mass, and end-of-life stellar abundances as initial conditions. Using a broad set of spherically symmetric core-collapse simulations we examine the effects of these key parameters on explosive nucleosynthesis and final explosion yields. The post-bounce temperature and density evolution of zero-age main-sequence 15, 20, and 25 solar mass progenitors are post-processed through the Nucleosynthesis Grid nuclear network to obtain detailed explosive yields. In particular, this study focuses on radio isotopes that are of particular interest to the next generation of gamma-ray astronomical observations: 43K, 47Ca, 44Sc, 47Sc, 48V, 48Cr, 51Cr, 52Mn, 59Fe, 56Co, 57Co, and 57Ni. Furthermore, these nuclides may be key in advancing our understanding of the inner workings of core-collapse supernovae by probing the parameters of the explosion engine. We find that the isotopes that are strong indicators of explosion energy are 43K, 47Ca, 44Sc, 47Sc, and 59Fe, those that are dependent on the progenitor structure are 48V, 51Cr, and 57Co, and those that probe neither are 48Cr, 52Mn, 57Ni, and 56Co. We discuss the prospects of observing these radionuclides in supernova remnants.},
doi = {10.3847/1538-4357/ab64f8},
journal = {The Astrophysical Journal (Online)},
number = 1,
volume = 890,
place = {United States},
year = {Mon Feb 10 00:00:00 EST 2020},
month = {Mon Feb 10 00:00:00 EST 2020}
}

Works referenced in this record:

60Fe in core-collapse supernovae and prospects for X-ray and gamma-ray detection in supernova remnants
journal, February 2019

  • Jones, Samuel W.; Möller, Heiko; Fryer, Chris L.
  • Monthly Notices of the Royal Astronomical Society, Vol. 485, Issue 3
  • DOI: 10.1093/mnras/stz536

Core-Collapse Supernovae and Their Ejecta
journal, March 1996

  • Thielemann, Friedrich-Karl; Nomoto, Ken'ichi; Hashimoto, Masa-Aki
  • The Astrophysical Journal, Vol. 460
  • DOI: 10.1086/176980

Explosive Nucleosynthesis in Stars
journal, August 1969

  • Arnett, W. David
  • The Astrophysical Journal, Vol. 157
  • DOI: 10.1086/150157

The r-, s-, and p-Processes in Nucleosynthesis
journal, September 1994


What Can the Accretion‐induced Collapse of White Dwarfs Really Explain?
journal, May 1999

  • Fryer, Chris; Benz, Willy; Herant, Marc
  • The Astrophysical Journal, Vol. 516, Issue 2
  • DOI: 10.1086/307119

TRENDS IN 44 Ti AND 56 Ni FROM CORE-COLLAPSE SUPERNOVAE
journal, October 2010

  • Magkotsios, Georgios; Timmes, F. X.; Hungerford, Aimee L.
  • The Astrophysical Journal Supplement Series, Vol. 191, Issue 1
  • DOI: 10.1088/0067-0049/191/1/66

THE WEAK s -PROCESS IN MASSIVE STARS AND ITS DEPENDENCE ON THE NEUTRON CAPTURE CROSS SECTIONS
journal, February 2010


Inside the supernova: A powerful convective engine
journal, November 1994

  • Herant, Marc; Benz, Willy; Hix, W. Raphael
  • The Astrophysical Journal, Vol. 435
  • DOI: 10.1086/174817

The Intermediate r-process in Core-collapse Supernovae Driven by the Magneto-rotational Instability
journal, February 2017

  • Nishimura (西村信, N.; Sawai (澤井秀, H.; Takiwaki (滝脇知, T.
  • The Astrophysical Journal, Vol. 836, Issue 2
  • DOI: 10.3847/2041-8213/aa5dee

Constraints on the Progenitor of Cassiopeia A
journal, April 2006

  • Young, Patrick A.; Fryer, Chris L.; Hungerford, Aimee
  • The Astrophysical Journal, Vol. 640, Issue 2
  • DOI: 10.1086/500108

Progenitor-Explosion Connection and Remnant Birth Masses for Neutrino-Driven Supernovae of Iron-Core Progenitors
journal, September 2012

  • Ugliano, Marcella; Janka, Hans-Thomas; Marek, Andreas
  • The Astrophysical Journal, Vol. 757, Issue 1
  • DOI: 10.1088/0004-637X/757/1/69

r -process Nucleosynthesis from Three-dimensional Magnetorotational Core-collapse Supernovae
journal, September 2018

  • Mösta, Philipp; Roberts, Luke F.; Halevi, Goni
  • The Astrophysical Journal, Vol. 864, Issue 2
  • DOI: 10.3847/1538-4357/aad6ec

X-ray and gamma-ray emission from supernova 1987A
journal, June 1988

  • Pinto, Philip A.; Woosley, S. E.
  • The Astrophysical Journal, Vol. 329
  • DOI: 10.1086/166426

An Inexpensive Nuclear Energy Generation Network for Stellar Hydrodynamics
journal, July 2000

  • Timmes, F. X.; Hoffman, R. D.; Woosley, S. E.
  • The Astrophysical Journal Supplement Series, Vol. 129, Issue 1
  • DOI: 10.1086/313407

The evolution of isotope ratios in the Milky Way Galaxy: The evolution of isotope ratios
journal, May 2011

  • Kobayashi, Chiaki; Karakas, Amanda I.; Umeda, Hideyuki
  • Monthly Notices of the Royal Astronomical Society, Vol. 414, Issue 4
  • DOI: 10.1111/j.1365-2966.2011.18621.x

A variable order Runge-Kutta method for initial value problems with rapidly varying right-hand sides
journal, September 1990

  • Cash, J. R.; Karp, Alan H.
  • ACM Transactions on Mathematical Software, Vol. 16, Issue 3
  • DOI: 10.1145/79505.79507

Estimating the Contribution of Dynamical Ejecta in the Kilonova Associated with GW170817
journal, December 2017


Neutron Star Mergers Might Not Be the Only Source of r -process Elements in the Milky Way
journal, April 2019

  • Côté, Benoit; Eichler, Marius; Arcones, Almudena
  • The Astrophysical Journal, Vol. 875, Issue 2
  • DOI: 10.3847/1538-4357/ab10db

Nucleosynthesis in Stars and the Chemical Enrichment of Galaxies
journal, August 2013


Core-Collapse Supernovae from 9 to 120 Solar Masses Based on Neutrino-Powered Explosions
journal, April 2016


Pushing Core-Collapse Supernovae to Explosions in Spherical Symmetry. i. the Model and the case of sn 1987a
journal, June 2015


The Evolution and Explosion of Massive Stars. II. Explosive Hydrodynamics and Nucleosynthesis
journal, November 1995

  • Woosley, S. E.; Weaver, Thomas A.
  • The Astrophysical Journal Supplement Series, Vol. 101
  • DOI: 10.1086/192237

Equation of State of a Fermi Gas: Approximations for Various Degrees of Relativism and Degeneracy
journal, September 1996

  • Blinnikov, S. I.; Dunina-Barkovskaya, N. V.; Nadyozhin, D. K.
  • The Astrophysical Journal Supplement Series, Vol. 106
  • DOI: 10.1086/192334

Protoneutron star evolution and the neutrino-driven wind in general relativistic neutrino radiation hydrodynamics simulations
journal, July 2010


Integration of Nuclear Reaction Networks for Stellar Hydrodynamics
journal, September 1999

  • Timmes, F. X.
  • The Astrophysical Journal Supplement Series, Vol. 124, Issue 1
  • DOI: 10.1086/313257

The evolution and explosion of massive stars
journal, November 2002


Order and stepsize control in extrapolation methods
journal, October 1983


A semi-implicit mid-point rule for stiff systems of ordinary differential equations
journal, October 1983

  • Bader, G.; Deuflhard, P.
  • Numerische Mathematik, Vol. 41, Issue 3
  • DOI: 10.1007/BF01418331

A Two-Parameter Criterion for Classifying the Explodability of Massive Stars by the Neutrino-Driven Mechanism
journal, February 2016


Parameterizing the Supernova Engine and Its Effect on Remnants and Basic Yields
journal, March 2018

  • Fryer, Chris L.; Andrews, Sydney; Even, Wesley
  • The Astrophysical Journal, Vol. 856, Issue 1
  • DOI: 10.3847/1538-4357/aaaf6f

Composition of the Innermost Core‐Collapse Supernova Ejecta
journal, January 2006

  • Frohlich, C.; Hauser, P.; Liebendorfer, M.
  • The Astrophysical Journal, Vol. 637, Issue 1
  • DOI: 10.1086/498224

Presupernova Evolution of Differentially Rotating Massive Stars Including Magnetic Fields
journal, June 2005

  • Heger, A.; Woosley, S. E.; Spruit, H. C.
  • The Astrophysical Journal, Vol. 626, Issue 1
  • DOI: 10.1086/429868

The “weak” r-process in core-collapse supernovae
journal, May 2005

  • Wanajo, Shinya; Ishimaru, Yuhri
  • Proceedings of the International Astronomical Union, Vol. 1, Issue S228
  • DOI: 10.1017/S1743921305006174

Black-hole-neutron-star collisions
journal, September 1974

  • Lattimer, J. M.; Schramm, D. N.
  • The Astrophysical Journal, Vol. 192
  • DOI: 10.1086/181612