DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Laser cooling of antihydrogen atoms

Abstract

The photon—the quantum excitation of the electromagnetic field—is massless but carries momentum. A photon can therefore exert a force on an object upon collision1. Slowing the translational motion of atoms and ions by application of such a force2,3, known as laser cooling, was first demonstrated 40 years ago4,5. It revolutionized atomic physics over the following decades6–8, and it is now a workhorse in many fields, including studies on quantum degenerate gases, quantum information, atomic clocks and tests of fundamental physics. However, this technique has not yet been applied to antimatter. Here we demonstrate laser cooling of antihydrogen9, the antimatter atom consisting of an antiproton and a positron. By exciting the 1S–2P transition in antihydrogen with pulsed, narrow-linewidth, Lyman-α laser radiation10,11, we Doppler-cool a sample of magnetically trapped antihydrogen. Although we apply laser cooling in only one dimension, the trap couples the longitudinal and transverse motions of the anti-atoms, leading to cooling in all three dimensions. We observe a reduction in the median transverse energy by more than an order of magnitude—with a substantial fraction of the anti-atoms attaining submicroelectronvolt transverse kinetic energies. We also report the observation of the laser-driven 1S–2S transition in samples of laser-cooled antihydrogen atoms. The observedmore » spectral line is approximately four times narrower than that obtained without laser cooling. The demonstration of laser cooling and its immediate application has far-reaching implications for antimatter studies. A more localized, denser and colder sample of antihydrogen will drastically improve spectroscopic11–13and gravitational14studies of antihydrogen in ongoing experiments. Furthermore, the demonstrated ability to manipulate the motion of antimatter atoms by laser light will potentially provide ground-breaking opportunities for future experiments, such as anti-atomic fountains, anti-atom interferometry and the creation of antimatter molecules.« less

Authors:
 [1];  [2];  [3];  [4];  [5];  [1];  [4];  [3]; ORCiD logo [1];  [1];  [6];  [7]; ORCiD logo [4];  [6]; ORCiD logo [3];  [3];  [8]; ORCiD logo [9];  [9];  [7] more »; ; ; ; ; ; ; ; ORCiD logo; ORCiD logo; ; ; ; ; ; ; ; ; ; ORCiD logo; ; ORCiD logo; ORCiD logo; ; ; ORCiD logo; ORCiD logo; ; ; ; ; ; ; ; ; ; ; ; ORCiD logo « less
  1. Swansea Univ. (United Kingdom). College of Science. Dept. of Physics
  2. Univ. of Manchester (United Kingdom). School of Physics and Astronomy; Cockcroft Inst., Sci-Tech Daresbury, Warrington (United Kingdom)
  3. TRIUMF, Vancouver, British Columbia (Canada)
  4. Univ. of California, Berkeley, CA (United States). Dept. of Physics
  5. Universidade Federal do Rio de Janeiro (Brazil). Instituto de Fisica
  6. Univ. of Calgary, AB (Canada). Dept. of Physics and Astronomy
  7. Univ. of British Columbia, Vancouver, BC (Canada). Dept. of Physics and Astronomy
  8. TRIUMF, Vancouver, British Columbia (Canada); Univ. of British Columbia, Vancouver, BC (Canada). Dept. of Physics and Astronomy
  9. Aarhus Univ. (Denmark). Dept. of Physics and Astronomy
Publication Date:
Research Org.:
Brookhaven National Laboratory (BNL), Upton, NY (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES). Scientific User Facilities Division
Contributing Org.:
ALPHA Collaboration
OSTI Identifier:
1816445
Grant/Contract Number:  
SC0012704
Resource Type:
Accepted Manuscript
Journal Name:
Nature (London)
Additional Journal Information:
Journal Name: Nature (London); Journal Volume: 592; Journal Issue: 7852; Journal ID: ISSN 0028-0836
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; exotic atoms and molecules; experimental particle physics

Citation Formats

Baker, C. J., Bertsche, W., Capra, A., Carruth, C., Cesar, C. L., Charlton, M., Christensen, A., Collister, R., Mathad, A. Cridland, Eriksson, S., Evans, A., Evetts, N., Fajans, J., Friesen, T., Fujiwara, M. C., Gill, D. R., Grandemange, P., Granum, P., Hangst, J. S., Hardy, W. N., Hayden, M. E., Hodgkinson, D., Hunter, E., Isaac, C. A., Johnson, M. A., Jones, J. M., Jones, S. A., Jonsell, S., Khramov, A., Knapp, P., Kurchaninov, L., Madsen, N., Maxwell, D., McKenna, J. T. K., Menary, S., Michan, J. M., Momose, T., Mullan, P. S., Munich, J. J., Olchanski, K., Olin, A., Peszka, J., Powell, A., Pusa, P., Rasmussen, C. Ø., Robicheaux, F., Sacramento, R. L., Sameed, M., Sarid, E., Silveira, D. M., Starko, D. M., So, C., Stutter, G., Tharp, T. D., Thibeault, A., Thompson, R. I., van der Werf, D. P., and Wurtele, J. S. Laser cooling of antihydrogen atoms. United States: N. p., 2021. Web. doi:10.1038/s41586-021-03289-6.
Baker, C. J., Bertsche, W., Capra, A., Carruth, C., Cesar, C. L., Charlton, M., Christensen, A., Collister, R., Mathad, A. Cridland, Eriksson, S., Evans, A., Evetts, N., Fajans, J., Friesen, T., Fujiwara, M. C., Gill, D. R., Grandemange, P., Granum, P., Hangst, J. S., Hardy, W. N., Hayden, M. E., Hodgkinson, D., Hunter, E., Isaac, C. A., Johnson, M. A., Jones, J. M., Jones, S. A., Jonsell, S., Khramov, A., Knapp, P., Kurchaninov, L., Madsen, N., Maxwell, D., McKenna, J. T. K., Menary, S., Michan, J. M., Momose, T., Mullan, P. S., Munich, J. J., Olchanski, K., Olin, A., Peszka, J., Powell, A., Pusa, P., Rasmussen, C. Ø., Robicheaux, F., Sacramento, R. L., Sameed, M., Sarid, E., Silveira, D. M., Starko, D. M., So, C., Stutter, G., Tharp, T. D., Thibeault, A., Thompson, R. I., van der Werf, D. P., & Wurtele, J. S. Laser cooling of antihydrogen atoms. United States. https://doi.org/10.1038/s41586-021-03289-6
Baker, C. J., Bertsche, W., Capra, A., Carruth, C., Cesar, C. L., Charlton, M., Christensen, A., Collister, R., Mathad, A. Cridland, Eriksson, S., Evans, A., Evetts, N., Fajans, J., Friesen, T., Fujiwara, M. C., Gill, D. R., Grandemange, P., Granum, P., Hangst, J. S., Hardy, W. N., Hayden, M. E., Hodgkinson, D., Hunter, E., Isaac, C. A., Johnson, M. A., Jones, J. M., Jones, S. A., Jonsell, S., Khramov, A., Knapp, P., Kurchaninov, L., Madsen, N., Maxwell, D., McKenna, J. T. K., Menary, S., Michan, J. M., Momose, T., Mullan, P. S., Munich, J. J., Olchanski, K., Olin, A., Peszka, J., Powell, A., Pusa, P., Rasmussen, C. Ø., Robicheaux, F., Sacramento, R. L., Sameed, M., Sarid, E., Silveira, D. M., Starko, D. M., So, C., Stutter, G., Tharp, T. D., Thibeault, A., Thompson, R. I., van der Werf, D. P., and Wurtele, J. S. Wed . "Laser cooling of antihydrogen atoms". United States. https://doi.org/10.1038/s41586-021-03289-6. https://www.osti.gov/servlets/purl/1816445.
@article{osti_1816445,
title = {Laser cooling of antihydrogen atoms},
author = {Baker, C. J. and Bertsche, W. and Capra, A. and Carruth, C. and Cesar, C. L. and Charlton, M. and Christensen, A. and Collister, R. and Mathad, A. Cridland and Eriksson, S. and Evans, A. and Evetts, N. and Fajans, J. and Friesen, T. and Fujiwara, M. C. and Gill, D. R. and Grandemange, P. and Granum, P. and Hangst, J. S. and Hardy, W. N. and Hayden, M. E. and Hodgkinson, D. and Hunter, E. and Isaac, C. A. and Johnson, M. A. and Jones, J. M. and Jones, S. A. and Jonsell, S. and Khramov, A. and Knapp, P. and Kurchaninov, L. and Madsen, N. and Maxwell, D. and McKenna, J. T. K. and Menary, S. and Michan, J. M. and Momose, T. and Mullan, P. S. and Munich, J. J. and Olchanski, K. and Olin, A. and Peszka, J. and Powell, A. and Pusa, P. and Rasmussen, C. Ø. and Robicheaux, F. and Sacramento, R. L. and Sameed, M. and Sarid, E. and Silveira, D. M. and Starko, D. M. and So, C. and Stutter, G. and Tharp, T. D. and Thibeault, A. and Thompson, R. I. and van der Werf, D. P. and Wurtele, J. S.},
abstractNote = {The photon—the quantum excitation of the electromagnetic field—is massless but carries momentum. A photon can therefore exert a force on an object upon collision1. Slowing the translational motion of atoms and ions by application of such a force2,3, known as laser cooling, was first demonstrated 40 years ago4,5. It revolutionized atomic physics over the following decades6–8, and it is now a workhorse in many fields, including studies on quantum degenerate gases, quantum information, atomic clocks and tests of fundamental physics. However, this technique has not yet been applied to antimatter. Here we demonstrate laser cooling of antihydrogen9, the antimatter atom consisting of an antiproton and a positron. By exciting the 1S–2P transition in antihydrogen with pulsed, narrow-linewidth, Lyman-α laser radiation10,11, we Doppler-cool a sample of magnetically trapped antihydrogen. Although we apply laser cooling in only one dimension, the trap couples the longitudinal and transverse motions of the anti-atoms, leading to cooling in all three dimensions. We observe a reduction in the median transverse energy by more than an order of magnitude—with a substantial fraction of the anti-atoms attaining submicroelectronvolt transverse kinetic energies. We also report the observation of the laser-driven 1S–2S transition in samples of laser-cooled antihydrogen atoms. The observed spectral line is approximately four times narrower than that obtained without laser cooling. The demonstration of laser cooling and its immediate application has far-reaching implications for antimatter studies. A more localized, denser and colder sample of antihydrogen will drastically improve spectroscopic11–13and gravitational14studies of antihydrogen in ongoing experiments. Furthermore, the demonstrated ability to manipulate the motion of antimatter atoms by laser light will potentially provide ground-breaking opportunities for future experiments, such as anti-atomic fountains, anti-atom interferometry and the creation of antimatter molecules.},
doi = {10.1038/s41586-021-03289-6},
journal = {Nature (London)},
number = 7852,
volume = 592,
place = {United States},
year = {Wed Mar 31 00:00:00 EDT 2021},
month = {Wed Mar 31 00:00:00 EDT 2021}
}

Works referenced in this record:

Aspects of 1 S -2 S spectroscopy of trapped antihydrogen atoms
journal, September 2017

  • Rasmussen, C. Ø; Madsen, N.; Robicheaux, F.
  • Journal of Physics B: Atomic, Molecular and Optical Physics, Vol. 50, Issue 18
  • DOI: 10.1088/1361-6455/aa854c

Acceleration and Trapping of Particles by Radiation Pressure
journal, January 1970


Optical-Sideband Cooling of Visible Atom Cloud Confined in Parabolic Well
journal, July 1978


Observation of the 1S–2P Lyman-α transition in antihydrogen
journal, August 2018


Electron cyclotron resonance (ECR) magnetometry with a plasma reservoir
journal, March 2020

  • Hunter, E. D.; Christensen, A.; Fajans, J.
  • Physics of Plasmas, Vol. 27, Issue 3
  • DOI: 10.1063/1.5141999

Lifetime of magnetically trapped antihydrogen in ALPHA
journal, January 2019


Characterization of the 1S–2S transition in antihydrogen
journal, April 2018


Axial to transverse energy mixing dynamics in octupole-based magnetostatic antihydrogen traps
journal, May 2018


Nobel Lecture: Laser cooling and trapping of neutral atoms
journal, July 1998


AEgIS at ELENA: outlook for physics with a pulsed cold antihydrogen beam
journal, February 2018

  • Doser, M.; Aghion, S.; Amsler, C.
  • Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 376, Issue 2116
  • DOI: 10.1098/rsta.2017.0274

Confinement of antihydrogen for 1,000 seconds
journal, January 2011

  • Collaboration, Alpha
  • Nature Physics, Vol. 7, Issue 7, p. 558-564
  • DOI: 10.1038/nphys2025

Development of a Lyman-α laser system for spectroscopy and laser cooling of antihydrogen
journal, February 2014


Nobel Lecture: The manipulation of neutral particles
journal, July 1998


Observation of the hyperfine spectrum of antihydrogen
journal, August 2017

  • Ahmadi, M.; Alves, B. X. R.; Baker, C. J.
  • Nature, Vol. 548, Issue 7665
  • DOI: 10.1038/nature23446

A source of antihydrogen for in-flight hyperfine spectroscopy
journal, January 2014

  • Kuroda, N.; Ulmer, S.; Murtagh, D. J.
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms4089

First Capture of Antiprotons in a Penning Trap: A Kiloelectronvolt Source
journal, November 1986


Investigation of the fine structure of antihydrogen
journal, February 2020


Antimatter Interferometry for Gravity Measurements
journal, March 2014


Production and detection of cold antihydrogen atoms
journal, September 2002


Background-Free Observation of Cold Antihydrogen with Field-Ionization Analysis of Its States
journal, October 2002


Antihydrogen annihilation reconstruction with the ALPHA silicon detector
journal, August 2012

  • Andresen, G. B.; Ashkezari, M. D.; Bertsche, W.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 684
  • DOI: 10.1016/j.nima.2012.04.082

Resonant quantum transitions in trapped antihydrogen atoms
journal, March 2012

  • Amole, C.; Ashkezari, M. D.; Baquero-Ruiz, M.
  • Nature, Vol. 483, Issue 7390
  • DOI: 10.1038/nature10942

Observation of the 1S–2S transition in trapped antihydrogen
journal, December 2016

  • Ahmadi, M.; Alves, B. X. R.; Baker, C. J.
  • Nature, Vol. 541, Issue 7638
  • DOI: 10.1038/nature21040

An improved limit on the charge of antihydrogen from stochastic acceleration
journal, January 2016

  • Ahmadi, M.; Baquero-Ruiz, M.; Bertsche, W.
  • Nature, Vol. 529, Issue 7586
  • DOI: 10.1038/nature16491

Two-Photon Spectroscopy of Trapped Atomic Hydrogen
journal, July 1996


Continuous-wave Lyman-α generation with solid-state lasers
journal, January 2009

  • Scheid, Martin; Kolbe, Daniel; Markert, Frank
  • Optics Express, Vol. 17, Issue 14
  • DOI: 10.1364/OE.17.011274

A proposal for laser cooling antihydrogen atoms
journal, January 2013

  • Donnan, P. H.; Fujiwara, M. C.; Robicheaux, F.
  • Journal of Physics B: Atomic, Molecular and Optical Physics, Vol. 46, Issue 2
  • DOI: 10.1088/0953-4075/46/2/025302

Collisionless motion of neutral particles in magnetostatic traps
journal, June 1994

  • Surkov, E. L.; Walraven, J. T. M.; Shlyapnikov, G. V.
  • Physical Review A, Vol. 49, Issue 6
  • DOI: 10.1103/PhysRevA.49.4778

Evaporative cooling of magnetically trapped and compressed spin-polarized hydrogen
journal, September 1986


Laser cooling of atoms and molecules with ultrafast pulses
journal, June 2006


Radiation-Pressure Cooling of Bound Resonant Absorbers
journal, June 1978


Narrowband solid state vuv coherent source for laser cooling of antihydrogen
journal, May 2015

  • Michan, J. Mario; Polovy, Gene; Madison, Kirk W.
  • Hyperfine Interactions, Vol. 235, Issue 1-3
  • DOI: 10.1007/s10751-015-1186-0

Optical cooling of atomic hydrogen in a magnetic trap
journal, April 1993


A magnetic trap for antihydrogen confinement
journal, October 2006

  • Bertsche, W.; Boston, A.; Bowe, P. D.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 566, Issue 2
  • DOI: 10.1016/j.nima.2006.07.012

Silicon vertex detector upgrade in the ALPHA experiment
journal, December 2013

  • Amole, C.; Andresen, G. B.; Ashkezari, M. D.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 732
  • DOI: 10.1016/j.nima.2013.05.188

Improved Measurement of the Hydrogen 1 S 2 S Transition Frequency
journal, November 2011


Continuous Wave Coherent Lyman- α Radiation
journal, November 1999


Trapped Antihydrogen in Its Ground State
journal, March 2012


Real-time Detection of Antihydrogen Annihilations and Applications to Spectroscopy
journal, January 2014


Positron trapping in an electrostatic well by inelastic collisions with nitrogen molecules
journal, November 1992


Antihydrogen production using trapped plasmas
journal, May 1988


Nobel Lecture: Manipulating atoms with photons
journal, July 1998


In situ electromagnetic field diagnostics with an electron plasma in a Penning–Malmberg trap
journal, January 2014


Pulsed Sisyphus Scheme for Laser Cooling of Atomic (Anti)Hydrogen
journal, May 2011


Trapped antihydrogen
journal, November 2010

  • Andresen, G. B.; Ashkezari, M. D.; Baquero-Ruiz, M.
  • Nature, Vol. 468, Issue 7324
  • DOI: 10.1038/nature09610

Status of the GBAR experiment at CERN
journal, January 2019


Cooling of gases by laser radiation
journal, January 1975


C P T tests with the antihydrogen molecular ion
journal, July 2018


Machine learning for antihydrogen detection at ALPHA
journal, September 2018


Antihydrogen accumulation for fundamental symmetry tests
journal, September 2017


Laser cooling of magnetically trapped neutral atoms
journal, January 1992

  • Helmerson, Kristian; Martin, Alex; Pritchard, David E.
  • Journal of the Optical Society of America B, Vol. 9, Issue 11
  • DOI: 10.1364/JOSAB.9.001988

Continuous-wave Doppler cooling of hydrogen atoms with two-photon transitions
journal, January 2001


Magnetic trapping of spin-polarized atomic hydrogen
journal, August 1987