DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Contributions to Polar Amplification in CMIP5 and CMIP6 Models

Abstract

As a step towards understanding the fundamental drivers of polar climate change, we evaluate contributions to polar warming and its seasonal and hemispheric asymmetries in Coupled Model Intercomparison Project phase 6 (CMIP6) as compared with CMIP5. CMIP6 models broadly capture the observed pattern of surface- and winter-dominated Arctic warming that has outpaced both tropical and Antarctic warming in recent decades. For both CMIP5 and CMIP6, CO2 quadrupling experiments reveal that the lapse-rate and surface albedo feedbacks contribute most to stronger warming in the Arctic than the tropics or Antarctic. The relative strength of the polar surface albedo feedback in comparison to the lapse-rate feedback is sensitive to the choice of radiative kernel, and the albedo feedback contributes most to intermodel spread in polar warming at both poles. By separately calculating moist and dry atmospheric heat transport, we show that increased poleward moisture transport is another important driver of Arctic amplification and the largest contributor to projected Antarctic warming. Seasonal ocean heat storage and winter-amplified temperature feedbacks contribute most to the winter peak in warming in the Arctic and a weaker winter peak in the Antarctic. In comparison with CMIP5, stronger polar warming in CMIP6 results from a larger surface albedomore » feedback at both poles, combined with less-negative cloud feedbacks in the Arctic and increased poleward moisture transport in the Antarctic. However, normalizing by the global-mean surface warming yields a similar degree of Arctic amplification and only slightly increased Antarctic amplification in CMIP6 compared to CMIP5.« less

Authors:
 [1];  [2];  [3];  [1];  [4]
  1. Univ. of Washington, Seattle, WA (United States). Dept. of Atmospheric Sciences
  2. Univ. of Washington, Seattle, WA (United States). Dept. of Atmospheric Sciences; Univ. of Washington, Seattle, WA (United States). School of Oceanography
  3. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  4. Univ. of Washington, Seattle, WA (United States). Polar Science Center, Applied Physics Lab.
Publication Date:
Research Org.:
Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1814671
Report Number(s):
LLNL-JRNL-822049
Journal ID: ISSN 2296-6463; 1034255
Grant/Contract Number:  
AC52-07NA27344
Resource Type:
Accepted Manuscript
Journal Name:
Frontiers in Earth Science
Additional Journal Information:
Journal Volume: 9; Journal Issue: N/A; Journal ID: ISSN 2296-6463
Publisher:
Frontiers Research Foundation
Country of Publication:
United States
Language:
English
Subject:
58 GEOSCIENCES; 54 ENVIRONMENTAL SCIENCES; CMIP6; CMIP5; polar amplification; climate feedbacks; Arctic; Antarctic

Citation Formats

Hahn, L. C., Armour, K. C., Zelinka, M. D., Bitz, C. M., and Donohoe, A. Contributions to Polar Amplification in CMIP5 and CMIP6 Models. United States: N. p., 2021. Web. doi:10.3389/feart.2021.710036.
Hahn, L. C., Armour, K. C., Zelinka, M. D., Bitz, C. M., & Donohoe, A. Contributions to Polar Amplification in CMIP5 and CMIP6 Models. United States. https://doi.org/10.3389/feart.2021.710036
Hahn, L. C., Armour, K. C., Zelinka, M. D., Bitz, C. M., and Donohoe, A. Fri . "Contributions to Polar Amplification in CMIP5 and CMIP6 Models". United States. https://doi.org/10.3389/feart.2021.710036. https://www.osti.gov/servlets/purl/1814671.
@article{osti_1814671,
title = {Contributions to Polar Amplification in CMIP5 and CMIP6 Models},
author = {Hahn, L. C. and Armour, K. C. and Zelinka, M. D. and Bitz, C. M. and Donohoe, A.},
abstractNote = {As a step towards understanding the fundamental drivers of polar climate change, we evaluate contributions to polar warming and its seasonal and hemispheric asymmetries in Coupled Model Intercomparison Project phase 6 (CMIP6) as compared with CMIP5. CMIP6 models broadly capture the observed pattern of surface- and winter-dominated Arctic warming that has outpaced both tropical and Antarctic warming in recent decades. For both CMIP5 and CMIP6, CO2 quadrupling experiments reveal that the lapse-rate and surface albedo feedbacks contribute most to stronger warming in the Arctic than the tropics or Antarctic. The relative strength of the polar surface albedo feedback in comparison to the lapse-rate feedback is sensitive to the choice of radiative kernel, and the albedo feedback contributes most to intermodel spread in polar warming at both poles. By separately calculating moist and dry atmospheric heat transport, we show that increased poleward moisture transport is another important driver of Arctic amplification and the largest contributor to projected Antarctic warming. Seasonal ocean heat storage and winter-amplified temperature feedbacks contribute most to the winter peak in warming in the Arctic and a weaker winter peak in the Antarctic. In comparison with CMIP5, stronger polar warming in CMIP6 results from a larger surface albedo feedback at both poles, combined with less-negative cloud feedbacks in the Arctic and increased poleward moisture transport in the Antarctic. However, normalizing by the global-mean surface warming yields a similar degree of Arctic amplification and only slightly increased Antarctic amplification in CMIP6 compared to CMIP5.},
doi = {10.3389/feart.2021.710036},
journal = {Frontiers in Earth Science},
number = N/A,
volume = 9,
place = {United States},
year = {Fri Aug 20 00:00:00 EDT 2021},
month = {Fri Aug 20 00:00:00 EDT 2021}
}

Works referenced in this record:

The Role of Surface Albedo Feedback in Climate
journal, April 2004


Influence of Midlatitude Surface Thermal Anomalies on the Polar Midtroposphere in an Idealized Moist Model
journal, April 2018

  • Fajber, Robert; Kushner, Paul J.; Laliberté, Frédéric
  • Journal of the Atmospheric Sciences, Vol. 75, Issue 4
  • DOI: 10.1175/JAS-D-17-0283.1

Analytic radiative‐advective equilibrium as a model for high‐latitude climate
journal, January 2016

  • Cronin, Timothy W.; Jansen, Malte F.
  • Geophysical Research Letters, Vol. 43, Issue 1
  • DOI: 10.1002/2015GL067172

Polar amplification of climate change in coupled models
journal, September 2003


The impacts of cloud-radiative changes on poleward atmospheric and oceanic energy transport in a warmer climate
journal, July 2021


Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization
journal, January 2016

  • Eyring, Veronika; Bony, Sandrine; Meehl, Gerald A.
  • Geoscientific Model Development, Vol. 9, Issue 5
  • DOI: 10.5194/gmd-9-1937-2016

The Seasonal Cycle of Atmospheric Heating and Temperature
journal, July 2013


Sea ice and atmospheric circulation shape the high-latitude lapse rate feedback
journal, October 2020

  • Feldl, Nicole; Po-Chedley, Stephen; Singh, Hansi K. A.
  • npj Climate and Atmospheric Science, Vol. 3, Issue 1
  • DOI: 10.1038/s41612-020-00146-7

A new method for diagnosing radiative forcing and climate sensitivity
journal, January 2004


Forcing and feedback in the MPI-ESM-LR coupled model under abruptly quadrupled CO 2 : FORCING AND FEEDBACK IN THE MPI-ESM-LR
journal, October 2013

  • Block, K.; Mauritsen, T.
  • Journal of Advances in Modeling Earth Systems, Vol. 5, Issue 4
  • DOI: 10.1002/jame.20041

Using Relative Humidity as a State Variable in Climate Feedback Analysis
journal, April 2012


On the pattern of CO 2 radiative forcing and poleward energy transport : CO
journal, October 2017

  • Huang, Yi; Xia, Yan; Tan, Xiaoxiao
  • Journal of Geophysical Research: Atmospheres, Vol. 122, Issue 20
  • DOI: 10.1002/2017JD027221

Seasonal energy exchange in sea ice retreat regions contributes to differences in projected Arctic warming
journal, November 2018


Efficacy of climate forcings
journal, January 2005


What can moist thermodynamics tell us about circulation shifts in response to uniform warming?: MOIST THERMODYNAMICS AND CIRCULATION
journal, May 2016

  • Shaw, Tiffany A.; Voigt, Aiko
  • Geophysical Research Letters, Vol. 43, Issue 9
  • DOI: 10.1002/2016GL068712

The remote impacts of climate feedbacks on regional climate predictability
journal, January 2015

  • Roe, Gerard H.; Feldl, Nicole; Armour, Kyle C.
  • Nature Geoscience, Vol. 8, Issue 2
  • DOI: 10.1038/ngeo2346

Arctic amplification dominated by temperature feedbacks in contemporary climate models
journal, February 2014

  • Pithan, Felix; Mauritsen, Thorsten
  • Nature Geoscience, Vol. 7, Issue 3
  • DOI: 10.1038/ngeo2071

Polar amplification of surface warming on an aquaplanet in “ghost forcing” experiments without sea ice feedbacks
journal, April 2005


Intermodel Spread in the Pattern Effect and Its Contribution to Climate Sensitivity in CMIP5 and CMIP6 Models
journal, September 2020


Increasing atmospheric poleward energy transport with global warming: INCREASING FLUXES
journal, December 2010

  • Hwang, Yen-Ting; Frierson, Dargan M. W.
  • Geophysical Research Letters, Vol. 37, Issue 24
  • DOI: 10.1029/2010GL045440

The emergence of surface-based Arctic amplification
journal, January 2009

  • Serreze, M. C.; Barrett, A. P.; Stroeve, J. C.
  • The Cryosphere, Vol. 3, Issue 1
  • DOI: 10.5194/tc-3-11-2009

Assessing Global and Local Radiative Feedbacks Based on AGCM Simulations for 1980–2014/2017
journal, June 2020

  • Zhang, Rudong; Wang, Hailong; Fu, Qiang
  • Geophysical Research Letters, Vol. 47, Issue 12
  • DOI: 10.1029/2020GL088063

Surface and top-of-atmosphere radiative feedback kernels for CESM-CAM5
journal, January 2018

  • Pendergrass, Angeline G.; Conley, Andrew; Vitt, Francis M.
  • Earth System Science Data, Vol. 10, Issue 1
  • DOI: 10.5194/essd-10-317-2018

The Seasonal Atmospheric Response to Projected Arctic Sea Ice Loss in the Late Twenty-First Century
journal, January 2010

  • Deser, Clara; Tomas, Robert; Alexander, Michael
  • Journal of Climate, Vol. 23, Issue 2
  • DOI: 10.1175/2009JCLI3053.1

Four perspectives on climate feedbacks: PERSPECTIVES
journal, July 2013

  • Feldl, N.; Roe, G. H.
  • Geophysical Research Letters, Vol. 40, Issue 15
  • DOI: 10.1002/grl.50711

Mixed-phase clouds cause climate model biases in Arctic wintertime temperature inversions
journal, October 2013


Climate models disagree on the sign of total radiative feedback in the Arctic
journal, December 2019

  • Block, Karoline; Schneider, Florian A.; Mülmenstädt, Johannes
  • Tellus A: Dynamic Meteorology and Oceanography, Vol. 72, Issue 1
  • DOI: 10.1080/16000870.2019.1696139

The ERA-Interim reanalysis: configuration and performance of the data assimilation system
journal, April 2011

  • Dee, D. P.; Uppala, S. M.; Simmons, A. J.
  • Quarterly Journal of the Royal Meteorological Society, Vol. 137, Issue 656
  • DOI: 10.1002/qj.828

Amplification of Arctic warming by past air pollution reductions in Europe
journal, March 2016

  • Acosta Navarro, J. C.; Varma, V.; Riipinen, I.
  • Nature Geoscience, Vol. 9, Issue 4
  • DOI: 10.1038/ngeo2673

On the Nature of the Arctic's Positive Lapse‐Rate Feedback
journal, January 2021

  • Boeke, Robyn C.; Taylor, Patrick C.; Sejas, Sergio A.
  • Geophysical Research Letters, Vol. 48, Issue 1
  • DOI: 10.1029/2020GL091109

Arctic Inversion Strength in Climate Models
journal, September 2011

  • Medeiros, Brian; Deser, Clara; Tomas, Robert A.
  • Journal of Climate, Vol. 24, Issue 17
  • DOI: 10.1175/2011JCLI3968.1

Local and remote controls on observed Arctic warming: CONTROLS ON ARCTIC WARMING
journal, May 2012

  • Screen, J. A.; Deser, C.; Simmonds, I.
  • Geophysical Research Letters, Vol. 39, Issue 10
  • DOI: 10.1029/2012GL051598

Arctic amplification is caused by sea-ice loss under increasing CO2
journal, January 2019


Evaluation of Six Atmospheric Reanalyses over Arctic Sea Ice from Winter to Early Summer
journal, June 2019


Isentropic constraints by midlatitude surface warming on the Arctic midtroposphere: ISENTROPIC ARCTIC WARMING
journal, February 2013

  • Laliberté, F.; Kushner, P. J.
  • Geophysical Research Letters, Vol. 40, Issue 3
  • DOI: 10.1029/2012GL054306

A Decomposition of Feedback Contributions to Polar Warming Amplification
journal, September 2013


The ocean’s role in the transient response of climate to abrupt greenhouse gas forcing
journal, September 2014


Statistical significance of climate sensitivity predictors obtained by data mining
journal, March 2014

  • Caldwell, Peter M.; Bretherton, Christopher S.; Zelinka, Mark D.
  • Geophysical Research Letters, Vol. 41, Issue 5
  • DOI: 10.1002/2014GL059205

An analysis of present and future seasonal Northern Hemisphere land snow cover simulated by CMIP5 coupled climate models
journal, January 2013

  • Brutel-Vuilmet, C.; Ménégoz, M.; Krinner, G.
  • The Cryosphere, Vol. 7, Issue 1
  • DOI: 10.5194/tc-7-67-2013

Cold‐Season Arctic Amplification Driven by Arctic Ocean‐Mediated Seasonal Energy Transfer
journal, January 2021

  • Chung, Eui‐Seok; Ha, Kyung‐Ja; Timmermann, Axel
  • Earth's Future, Vol. 9, Issue 2
  • DOI: 10.1029/2020EF001898

Coupling between Arctic feedbacks and changes in poleward energy transport: ENERGY TRANSPORT AND POLAR AMPLIFICATION
journal, September 2011

  • Hwang, Yen-Ting; Frierson, Dargan M. W.; Kay, Jennifer E.
  • Geophysical Research Letters, Vol. 38, Issue 17
  • DOI: 10.1029/2011GL048546

Quantifying climate feedbacks in polar regions
journal, May 2018


The polar amplification asymmetry: role of Antarctic surface height
journal, January 2017


Evidence of Strong Contributions From Mixed‐Phase Clouds to Arctic Climate Change
journal, March 2019

  • Tan, Ivy; Storelvmo, Trude
  • Geophysical Research Letters, Vol. 46, Issue 5
  • DOI: 10.1029/2018GL081871

The Polar Amplification Model Intercomparison Project (PAMIP) contribution to CMIP6: investigating the causes and consequences of polar amplification
journal, January 2019

  • Smith, Doug M.; Screen, James A.; Deser, Clara
  • Geoscientific Model Development, Vol. 12, Issue 3
  • DOI: 10.5194/gmd-12-1139-2019

Recent global-warming hiatus tied to equatorial Pacific surface cooling
journal, August 2013


Estimating Shortwave Radiative Forcing and Response in Climate Models
journal, June 2007

  • Taylor, K. E.; Crucifix, M.; Braconnot, P.
  • Journal of Climate, Vol. 20, Issue 11
  • DOI: 10.1175/JCLI4143.1

The Dependence of Radiative Forcing and Feedback on Evolving Patterns of Surface Temperature Change in Climate Models
journal, February 2015


Polar Amplification in CCSM4: Contributions from the Lapse Rate and Surface Albedo Feedbacks
journal, June 2014

  • Graversen, Rune G.; Langen, Peter L.; Mauritsen, Thorsten
  • Journal of Climate, Vol. 27, Issue 12
  • DOI: 10.1175/JCLI-D-13-00551.1

The central role of diminishing sea ice in recent Arctic temperature amplification
journal, April 2010


Evaluation of Seven Different Atmospheric Reanalysis Products in the Arctic
journal, April 2014


Polar amplification dominated by local forcing and feedbacks
journal, November 2018

  • Stuecker, Malte F.; Bitz, Cecilia M.; Armour, Kyle C.
  • Nature Climate Change, Vol. 8, Issue 12
  • DOI: 10.1038/s41558-018-0339-y

Conceptual model analysis of the influence of temperature feedbacks on polar amplification: TEMP. FEEDBACKS AND POLAR AMPLIFICATION
journal, November 2015

  • Payne, Ashley E.; Jansen, Malte F.; Cronin, Timothy W.
  • Geophysical Research Letters, Vol. 42, Issue 21
  • DOI: 10.1002/2015GL065889

Causes of Higher Climate Sensitivity in CMIP6 Models
journal, January 2020

  • Zelinka, Mark D.; Myers, Timothy A.; McCoy, Daniel T.
  • Geophysical Research Letters, Vol. 47, Issue 1
  • DOI: 10.1029/2019GL085782

Sources of Uncertainty in the Meridional Pattern of Climate Change
journal, September 2018

  • Bonan, D. B.; Armour, K. C.; Roe, G. H.
  • Geophysical Research Letters, Vol. 45, Issue 17
  • DOI: 10.1029/2018GL079429

A balance between radiative forcing and climate feedback in the modeled 20th century temperature response
journal, January 2011

  • Crook, Julia A.; Forster, Piers M.
  • Journal of Geophysical Research, Vol. 116, Issue D17
  • DOI: 10.1029/2011JD015924

Climate Feedbacks and Their Implications for Poleward Energy Flux Changes in a Warming Climate
journal, January 2012


Quantifying Climate Feedbacks Using Radiative Kernels
journal, July 2008

  • Soden, Brian J.; Held, Isaac M.; Colman, Robert
  • Journal of Climate, Vol. 21, Issue 14
  • DOI: 10.1175/2007JCLI2110.1

Testing reanalysis data sets in Antarctica: Trends, persistence properties, and trend significance
journal, November 2016

  • Wang, Yang; Zhou, Dong; Bunde, Armin
  • Journal of Geophysical Research: Atmospheres, Vol. 121, Issue 21
  • DOI: 10.1002/2016JD024864

Changes in polar amplification in response to increasing warming in CMIP6
journal, May 2021


The Radiative Forcing Model Intercomparison Project (RFMIP): experimental protocol for CMIP6
journal, January 2016

  • Pincus, Robert; Forster, Piers M.; Stevens, Bjorn
  • Geoscientific Model Development, Vol. 9, Issue 9
  • DOI: 10.5194/gmd-9-3447-2016

The Partitioning of Meridional Heat Transport from the Last Glacial Maximum to CO2 Quadrupling in Coupled Climate Models
journal, April 2020


Meridional Atmospheric Heat Transport Constrained by Energetics and Mediated by Large-Scale Diffusion
journal, May 2019


Using the Radiative Kernel Technique to Calculate Climate Feedbacks in NCAR’s Community Atmospheric Model
journal, May 2008

  • Shell, Karen M.; Kiehl, Jeffrey T.; Shields, Christine A.
  • Journal of Climate, Vol. 21, Issue 10
  • DOI: 10.1175/2007JCLI2044.1

Antarctic Elevation Drives Hemispheric Asymmetry in Polar Lapse Rate Climatology and Feedback
journal, August 2020

  • Hahn, L. C.; Armour, K. C.; Battisti, D. S.
  • Geophysical Research Letters, Vol. 47, Issue 16
  • DOI: 10.1029/2020GL088965

The Cloud Feedback Model Intercomparison Project (CFMIP) contribution to CMIP6
journal, January 2017

  • Webb, Mark J.; Andrews, Timothy; Bodas-Salcedo, Alejandro
  • Geoscientific Model Development, Vol. 10, Issue 1
  • DOI: 10.5194/gmd-10-359-2017

An Updated Assessment of Near‐Surface Temperature Change From 1850: The HadCRUT5 Data Set
journal, February 2021

  • Morice, C. P.; Kennedy, J. J.; Rayner, N. A.
  • Journal of Geophysical Research: Atmospheres, Vol. 126, Issue 3
  • DOI: 10.1029/2019JD032361

Sensitivity of a global climate model to an increase of CO 2 concentration in the atmosphere
journal, January 1980

  • Manabe, Syukuro; Stouffer, Ronald J.
  • Journal of Geophysical Research, Vol. 85, Issue C10
  • DOI: 10.1029/JC085iC10p05529

Southern Ocean warming delayed by circumpolar upwelling and equatorward transport
journal, May 2016

  • Armour, Kyle C.; Marshall, John; Scott, Jeffery R.
  • Nature Geoscience, Vol. 9, Issue 7
  • DOI: 10.1038/ngeo2731

Effective radiative forcing and adjustments in CMIP6 models
journal, January 2020

  • Smith, Christopher J.; Kramer, Ryan J.; Myhre, Gunnar
  • Atmospheric Chemistry and Physics, Vol. 20, Issue 16
  • DOI: 10.5194/acp-20-9591-2020

Increasing fall-winter energy loss from the Arctic Ocean and its role in Arctic temperature amplification: INCREASING ARCTIC OCEAN HEAT LOSS
journal, August 2010

  • Screen, James A.; Simmonds, Ian
  • Geophysical Research Letters, Vol. 37, Issue 16
  • DOI: 10.1029/2010gl044136

Understanding Rapid Adjustments to Diverse Forcing Agents
journal, November 2018

  • Smith, C. J.; Kramer, R. J.; Myhre, G.
  • Geophysical Research Letters, Vol. 45, Issue 21
  • DOI: 10.1029/2018gl079826

The central role of diminishing sea ice in recent Arctic temperature amplification
journal, April 2010


Coupled High-Latitude Climate Feedbacks and Their Impact on Atmospheric Heat Transport
journal, January 2017


An Evaluation of Surface Climatology in State-of-the-Art Reanalyses over the Antarctic Ice Sheet
journal, September 2019


The Effect of Atmospheric Transmissivity on Model and Observational Estimates of the Sea Ice Albedo Feedback
journal, July 2020

  • Donohoe, Aaron; Blanchard-Wrigglesworth, Ed; Schweiger, Axel
  • Journal of Climate, Vol. 33, Issue 13
  • DOI: 10.1175/jcli-d-19-0674.1