DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: In Situ Construction of Uniform and Robust Cathode–Electrolyte Interphase for Li-Rich Layered Oxides

Abstract

The high-energy-density Li-rich layered oxides (LLOs) as promising cathodes for Li-ion batteries suffer from the dissolution of transition metals (especially manganese) and severe side reactions in conventional electrolytes, which greatly deteriorate their electrochemical performance. Herein, an in situ “anchoring + pouring” synergistic cathode-electrolyte interphase (CEI) construction is realized by using 1,3,6-hexanetricarbonitrile (HTCN) and tris(trimethylsilyl) phosphate (TMSP) electrolyte additives to alleviate the challenges of an LLO (Li1.13Mn0.517Ni0.256Co0.097O2). HTCN with three nitrile groups can tightly anchor transition metals by coordinative interaction to form the CEI framework, and TMSP will electrochemically decompose to reshape the CEI layer. The uniform and robust in situ constructed CEI layer can suppress the transition metal dissolution, shield the cathode against diverse side reactions, and significantly improve the overall electrochemical performance of the cathode with a discharge voltage decay of only 0.5 mV/cycle-1. Further investigations based on a series of experimental techniques and theoretical calculations have revealed the composition of in situ constructed CEI layers and their distribution, including the enhanced HTCN anchoring effect after lattice densification of LLOs. Finally, this study provides insights into the in situ CEI construction for enhancing the performance of high-energy and high-voltage cathode materials through effective, convenient and economical electrolyte approaches.

Authors:
 [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [2];  [3]; ORCiD logo [1]
  1. Beijing Univ. of Technology (China)
  2. Argonne National Lab. (ANL), Argonne, IL (United States)
  3. Argonne National Lab. (ANL), Argonne, IL (United States); Stanford Univ., CA (United States); Imam AbduIrahman Bin Faisal Univ. (IAU), Dammam (Saudi Arabia)
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE); National Natural Science Foundation of China (NSFC); National Key Research and Development Program of China; Beijing Municipal Education Commission; Beijing Natural Science Foundation
OSTI Identifier:
1812754
Grant/Contract Number:  
AC02-06CH11357; JQ19003; 21975006; 21875007; 51802009; U19A2018; 2018YFB0104302; CIT&TCD201804013; KZ201910005002; KZ202010005007; LI82009
Resource Type:
Accepted Manuscript
Journal Name:
Advanced Functional Materials
Additional Journal Information:
Journal Volume: 31; Journal Issue: 8; Journal ID: ISSN 1616-301X
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; Li-rich layered oxides; cathode–electrolyte interphase; in situ construction; lithium-ion batteries; voltage decay

Citation Formats

Zhao, Jingteng, Liang, Yuan, Zhang, Xu, Zhang, Zihe, Wang, Errui, He, Shiman, Wang, Boya, Han, Zhijie, Lu, Jun, Amine, Khalil, and Yu, Haijun. In Situ Construction of Uniform and Robust Cathode–Electrolyte Interphase for Li-Rich Layered Oxides. United States: N. p., 2020. Web. doi:10.1002/adfm.202009192.
Zhao, Jingteng, Liang, Yuan, Zhang, Xu, Zhang, Zihe, Wang, Errui, He, Shiman, Wang, Boya, Han, Zhijie, Lu, Jun, Amine, Khalil, & Yu, Haijun. In Situ Construction of Uniform and Robust Cathode–Electrolyte Interphase for Li-Rich Layered Oxides. United States. https://doi.org/10.1002/adfm.202009192
Zhao, Jingteng, Liang, Yuan, Zhang, Xu, Zhang, Zihe, Wang, Errui, He, Shiman, Wang, Boya, Han, Zhijie, Lu, Jun, Amine, Khalil, and Yu, Haijun. Fri . "In Situ Construction of Uniform and Robust Cathode–Electrolyte Interphase for Li-Rich Layered Oxides". United States. https://doi.org/10.1002/adfm.202009192. https://www.osti.gov/servlets/purl/1812754.
@article{osti_1812754,
title = {In Situ Construction of Uniform and Robust Cathode–Electrolyte Interphase for Li-Rich Layered Oxides},
author = {Zhao, Jingteng and Liang, Yuan and Zhang, Xu and Zhang, Zihe and Wang, Errui and He, Shiman and Wang, Boya and Han, Zhijie and Lu, Jun and Amine, Khalil and Yu, Haijun},
abstractNote = {The high-energy-density Li-rich layered oxides (LLOs) as promising cathodes for Li-ion batteries suffer from the dissolution of transition metals (especially manganese) and severe side reactions in conventional electrolytes, which greatly deteriorate their electrochemical performance. Herein, an in situ “anchoring + pouring” synergistic cathode-electrolyte interphase (CEI) construction is realized by using 1,3,6-hexanetricarbonitrile (HTCN) and tris(trimethylsilyl) phosphate (TMSP) electrolyte additives to alleviate the challenges of an LLO (Li1.13Mn0.517Ni0.256Co0.097O2). HTCN with three nitrile groups can tightly anchor transition metals by coordinative interaction to form the CEI framework, and TMSP will electrochemically decompose to reshape the CEI layer. The uniform and robust in situ constructed CEI layer can suppress the transition metal dissolution, shield the cathode against diverse side reactions, and significantly improve the overall electrochemical performance of the cathode with a discharge voltage decay of only 0.5 mV/cycle-1. Further investigations based on a series of experimental techniques and theoretical calculations have revealed the composition of in situ constructed CEI layers and their distribution, including the enhanced HTCN anchoring effect after lattice densification of LLOs. Finally, this study provides insights into the in situ CEI construction for enhancing the performance of high-energy and high-voltage cathode materials through effective, convenient and economical electrolyte approaches.},
doi = {10.1002/adfm.202009192},
journal = {Advanced Functional Materials},
number = 8,
volume = 31,
place = {United States},
year = {Fri Dec 18 00:00:00 EST 2020},
month = {Fri Dec 18 00:00:00 EST 2020}
}

Works referenced in this record:

Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

Full Concentration Gradient‐Tailored Li‐Rich Layered Oxides for High‐Energy Lithium‐Ion Batteries
journal, November 2020


Performance and cost of materials for lithium-based rechargeable automotive batteries
journal, April 2018


Insights into the Cathode–Electrolyte Interphases of High-Energy-Density Cathodes in Lithium-Ion Batteries
journal, March 2020

  • Erickson, Evan M.; Li, Wangda; Dolocan, Andrei
  • ACS Applied Materials & Interfaces, Vol. 12, Issue 14
  • DOI: 10.1021/acsami.0c00900

Tris(trimethylsilyl)phosphate as electrolyte additive for self-discharge suppression of layered nickel cobalt manganese oxide
journal, September 2016


Recent advances in the electrolytes for interfacial stability of high-voltage cathodes in lithium-ion batteries
journal, January 2015

  • Choi, Nam-Soon; Han, Jung-Gu; Ha, Se-Young
  • RSC Advances, Vol. 5, Issue 4
  • DOI: 10.1039/C4RA11575A

Voltage Decay in Layered Li-Rich Mn-Based Cathode Materials
journal, August 2019


Operando Monitoring of F Formation in Lithium Ion Batteries
journal, January 2019


Al Doping for Mitigating the Capacity Fading and Voltage Decay of Layered Li and Mn-Rich Cathodes for Li-Ion Batteries
journal, February 2016

  • Nayak, Prasant Kumar; Grinblat, Judith; Levi, Mikhael
  • Advanced Energy Materials, Vol. 6, Issue 8
  • DOI: 10.1002/aenm.201502398

From ultrasoft pseudopotentials to the projector augmented-wave method
journal, January 1999


An electrolyte additive capable of scavenging HF and PF5 enables fast charging of lithium-ion batteries in LiPF6-based electrolytes
journal, January 2020


Toward Critical Electrode/Electrolyte Interfaces in Rechargeable Batteries
journal, April 2020


Prescribing Functional Additives for Treating the Poor Performances of High-Voltage (5 V-class) LiNi 0.5 Mn 1.5 O 4 /MCMB Li-Ion Batteries
journal, December 2017

  • Xu, Gaojie; Pang, Chunguang; Chen, Bingbing
  • Advanced Energy Materials, Vol. 8, Issue 9
  • DOI: 10.1002/aenm.201701398

VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data
journal, October 2011


Cuprite-coated Cu foam skeleton host enabling lateral growth of lithium dendrites for advanced Li metal batteries
journal, September 2019


Electrochemical Behavior of Suberonitrile as a High-Potential Electrolyte Additive and Co-Solvent for Li[Li 0.2 Mn 0.56 Ni 0.16 Co 0.08 ]O 2 Cathode Material
journal, January 2015

  • Ji, Yajuan; Zhang, Zhongru; Gao, Min
  • Journal of The Electrochemical Society, Vol. 162, Issue 4
  • DOI: 10.1149/2.1001504jes

In Situ Engineering of the Electrode-Electrolyte Interface for Stabilized Overlithiated Cathodes
journal, January 2017

  • Evans, Tyler; Piper, Daniela Molina; Sun, Huaxing
  • Advanced Materials, Vol. 29, Issue 10
  • DOI: 10.1002/adma.201604549

First-principles calculations of the electronic structure and spectra of strongly correlated systems: the LDA + U method
journal, January 1997

  • Anisimov, Vladimir I.; Aryasetiawan, F.; Lichtenstein, A. I.
  • Journal of Physics: Condensed Matter, Vol. 9, Issue 4, p. 767-808
  • DOI: 10.1088/0953-8984/9/4/002

Dielectric Polarization in Inverse Spinel‐Structured Mg 2 TiO 4 Coating to Suppress Oxygen Evolution of Li‐Rich Cathode Materials
journal, April 2020


Detailed Studies of a High-Capacity Electrode Material for Rechargeable Batteries, Li 2 MnO 3 −LiCo 1/3 Ni 1/3 Mn 1/3 O 2
journal, March 2011

  • Yabuuchi, Naoaki; Yoshii, Kazuhiro; Myung, Seung-Taek
  • Journal of the American Chemical Society, Vol. 133, Issue 12
  • DOI: 10.1021/ja108588y

Understanding the Electrode/Electrolyte Interface Layer on the Li-Rich Nickel Manganese Cobalt Layered Oxide Cathode by XPS
journal, October 2019

  • Hekmatfar, Maral; Kazzazi, Arefeh; Eshetu, Gebrekidan Gebresilassie
  • ACS Applied Materials & Interfaces, Vol. 11, Issue 46
  • DOI: 10.1021/acsami.9b14389

Understanding Long-Term Cycling Performance of Li 1.2 Ni 0.15 Mn 0.55 Co 0.1 O 2 –Graphite Lithium-Ion Cells
journal, January 2013

  • Li, Y.; Bettge, M.; Polzin, B.
  • Journal of The Electrochemical Society, Vol. 160, Issue 5
  • DOI: 10.1149/2.002305jes

Constructing Unique Cathode Interface by Manipulating Functional Groups of Electrolyte Additive for Graphite/LiNi 0.6 Co 0.2 Mn 0.2 O 2 Cells at High Voltage
journal, May 2018


Electrolytes and Interphases in Li-Ion Batteries and Beyond
journal, October 2014


Dissolution, migration, and deposition of transition metal ions in Li-ion batteries exemplified by Mn-based cathodes – a critical review
journal, January 2018

  • Zhan, Chun; Wu, Tianpin; Lu, Jun
  • Energy & Environmental Science, Vol. 11, Issue 2
  • DOI: 10.1039/C7EE03122J

Commercialization of Lithium Battery Technologies for Electric Vehicles
journal, June 2019

  • Zeng, Xiaoqiao; Li, Matthew; Abd El‐Hady, Deia
  • Advanced Energy Materials, Vol. 9, Issue 27
  • DOI: 10.1002/aenm.201900161

High-voltage positive electrode materials for lithium-ion batteries
journal, January 2017

  • Li, Wangda; Song, Bohang; Manthiram, Arumugam
  • Chemical Society Reviews, Vol. 46, Issue 10
  • DOI: 10.1039/C6CS00875E

Surface Complex Formation between Aliphatic Nitrile Molecules and Transition Metal Atoms for Thermally Stable Lithium-Ion Batteries
journal, May 2014

  • Kim, Young-Soo; Lee, Hochun; Song, Hyun-Kon
  • ACS Applied Materials & Interfaces, Vol. 6, Issue 11
  • DOI: 10.1021/am501671p

Direct Atomic-Resolution Observation of Two Phases in the Li 1.2 Mn 0.567 Ni 0.166 Co 0.067 O 2 Cathode Material for Lithium-Ion Batteries
journal, April 2013

  • Yu, Haijun; Ishikawa, Ryo; So, Yeong-Gi
  • Angewandte Chemie International Edition, Vol. 52, Issue 23
  • DOI: 10.1002/anie.201301236

Extending the Service Life of High-Ni Layered Oxides by Tuning the Electrode-Electrolyte Interphase
journal, September 2018


A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu
journal, April 2010

  • Grimme, Stefan; Antony, Jens; Ehrlich, Stephan
  • The Journal of Chemical Physics, Vol. 132, Issue 15
  • DOI: 10.1063/1.3382344

Film-forming electrolyte additives for rechargeable lithium-ion batteries: progress and outlook
journal, January 2019

  • Zhao, Huajun; Yu, Xueqing; Li, Jianding
  • Journal of Materials Chemistry A, Vol. 7, Issue 15
  • DOI: 10.1039/C9TA00126C

Recent advances in the research of functional electrolyte additives for lithium-ion batteries
journal, December 2017


Significance of Electrolyte Additive Molecule Structure in Constructing Robust Interphases on High-Voltage Cathodes
journal, February 2020

  • Li, Jianhui; Liao, Yuqing; Fan, Weizhen
  • ACS Applied Energy Materials, Vol. 3, Issue 3
  • DOI: 10.1021/acsaem.0c00168

Effect of the damping function in dispersion corrected density functional theory
journal, March 2011

  • Grimme, Stefan; Ehrlich, Stephan; Goerigk, Lars
  • Journal of Computational Chemistry, Vol. 32, Issue 7
  • DOI: 10.1002/jcc.21759

Density‐functional thermochemistry. III. The role of exact exchange
journal, April 1993

  • Becke, Axel D.
  • The Journal of Chemical Physics, Vol. 98, Issue 7, p. 5648-5652
  • DOI: 10.1063/1.464913

Batteries and fuel cells for emerging electric vehicle markets
journal, April 2018


Surface Modification for Suppressing Interfacial Parasitic Reactions of a Nickel-Rich Lithium-Ion Cathode
journal, March 2019


Electrolyte additives for lithium ion battery electrodes: progress and perspectives
journal, January 2016

  • Haregewoin, Atetegeb Meazah; Wotango, Aselefech Sorsa; Hwang, Bing-Joe
  • Energy Environ. Sci., Vol. 9, Issue 6
  • DOI: 10.1039/C6EE00123H

Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density
journal, January 1988


Overlooked electrolyte destabilization by manganese (II) in lithium-ion batteries
journal, July 2019


High-Energy Cathode Materials (Li 2 MnO 3 –LiMO 2 ) for Lithium-Ion Batteries
journal, March 2013

  • Yu, Haijun; Zhou, Haoshen
  • The Journal of Physical Chemistry Letters, Vol. 4, Issue 8
  • DOI: 10.1021/jz400032v

Investigations on the Fundamental Process of Cathode Electrolyte Interphase Formation and Evolution of High-Voltage Cathodes
journal, December 2019

  • Li, Qinghao; Wang, Yi; Wang, Xuelong
  • ACS Applied Materials & Interfaces, Vol. 12, Issue 2
  • DOI: 10.1021/acsami.9b16727

Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
journal, October 1996


Epicyanohydrin as an Interface Stabilizer Agent for Cathodes of Li-Ion Batteries
journal, November 2015

  • Nurpeissova, Arailym; Park, Dai-In; Kim, Sung-Soo
  • Journal of The Electrochemical Society, Vol. 163, Issue 2
  • DOI: 10.1149/2.0431602jes

Crystalline Grain Interior Configuration Affects Lithium Migration Kinetics in Li-Rich Layered Oxide
journal, April 2016


Cyclic Aminosilane‐Based Additive Ensuring Stable Electrode–Electrolyte Interfaces in Li‐Ion Batteries
journal, March 2020

  • Kim, Koeun; Hwang, Daeyeon; Kim, Saehun
  • Advanced Energy Materials, Vol. 10, Issue 15
  • DOI: 10.1002/aenm.202000012

Band theory and Mott insulators: Hubbard U instead of Stoner I
journal, July 1991

  • Anisimov, Vladimir I.; Zaanen, Jan; Andersen, Ole K.
  • Physical Review B, Vol. 44, Issue 3, p. 943-954
  • DOI: 10.1103/PhysRevB.44.943

Lithium bis(oxalate)borate additive in the electrolyte to improve Li-rich layered oxide cathode materials
journal, January 2020

  • Xiao, Zi; Liu, Jiuding; Fan, Guilan
  • Materials Chemistry Frontiers, Vol. 4, Issue 6
  • DOI: 10.1039/D0QM00094A

Elucidating anionic oxygen activity in lithium-rich layered oxides
journal, March 2018


Identifying rate limitation and a guide to design of fast‐charging Li‐ion battery
journal, December 2019


An Ultra‐Long‐Life Lithium‐Rich Li 1.2 Mn 0.6 Ni 0.2 O 2 Cathode by Three‐in‐One Surface Modification for Lithium‐Ion Batteries
journal, March 2020

  • Ding, Xiaokai; Luo, Dong; Cui, Jiaxiang
  • Angewandte Chemie International Edition, Vol. 59, Issue 20
  • DOI: 10.1002/anie.202000628

Understanding How Nitriles Stabilize Electrolyte/Electrode Interface at High Voltage
journal, December 2017

  • Zhi, Huozhen; Xing, Lidan; Zheng, Xiongwen
  • The Journal of Physical Chemistry Letters, Vol. 8, Issue 24
  • DOI: 10.1021/acs.jpclett.7b02734

Operando Fourier Transform Infrared Investigation of Cathode Electrolyte Interphase Dynamic Reversible Evolution on Li 1.2 Ni 0.2 Mn 0.6 O 2
journal, November 2019

  • Meng, Yiming; Chen, Guorong; Shi, Liyi
  • ACS Applied Materials & Interfaces, Vol. 11, Issue 48
  • DOI: 10.1021/acsami.9b17438

An investigation of functionalized electrolyte using succinonitrile additive for high voltage lithium-ion batteries
journal, February 2016


Surface Doping to Enhance Structural Integrity and Performance of Li-Rich Layered Oxide
journal, October 2018


Composite Nanostructure Construction on the Grain Surface of Li‐Rich Layered Oxides
journal, November 2020


Artificial Interphases for Highly Stable Lithium Metal Anode
journal, August 2019


Temperature-Sensitive Structure Evolution of Lithium–Manganese-Rich Layered Oxides for Lithium-Ion Batteries
journal, October 2018

  • Yu, Haijun; So, Yeong-Gi; Ren, Yang
  • Journal of the American Chemical Society, Vol. 140, Issue 45
  • DOI: 10.1021/jacs.8b07858