DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Microstructure and heteroatom dictate the doping mechanism and thermoelectric properties of poly(alkyl-chalcogenophenes)

Abstract

Heteroatom substitution can favorably alter electronic transport in conductive polymers to improve their thermoelectric performance. This study reports the spectroscopic, structural, and thermoelectric properties of poly(3–(3′,7′-dimethyloctyl) chalcogenophenes) or P3RX doped with 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ), where the heteroatom [X = thiophene (T), selenophene (Se), tellurophene (Te)], the doping methodology, and extent of doping are systematically varied. Spectroscopic measurements reveal that while all P3RX polymers are appreciably doped, the doping mechanism is inherently different. Poly(3-hexylthiophene) (P3HT, used as a control) and poly(3–(3′,7′-dimethyloctyl)tellurophene) (P3RTe) are doped primarily via integer charge transfer (ICT), whereas poly(3–(3′,7′-dimethyloctyl)selenophene) (P3RSe) and poly(3–(3′,7′-dimethyloctyl)thiophene) (P3RT) are doped via charge transfer complex (CTC) mechanisms. Despite these differences, all polymers saturate with roughly the same number of F4TCNQ counterions (1 dopant per 4 to 6 heterocycles), reinforcing the idea that the extent of charge transfer varies with the doping mechanism. Grazing incidence wide-angle x-ray scattering measurements provide insight into the structural driving forces behind different doping mechanisms—P3RT and P3RSe have similar microstructures in which F4TCNQ intercalates between the π-stacked backbones resulting in CTC doping (localized carriers), while P3HT and P3RTe have microstructures in which F4TCNQ intercalates in the alkyl side chain region, giving rise to ICT doping (delocalized carriers). These structural and spectroscopic observations shedmore » light on why P3HT and P3RTe obtain electrical conductivities ca. 3 S/cm, while P3RT and P3RSe have conductivities <10−3 S/cm under the same thin film processing conditions. Ultimately, this work quantifies the effects of heteroatom, microstructural ordering, extent of doping, and doping mechanism, thereby providing rational guidance for designing future thermoelectric polymer-dopant systems.« less

Authors:
 [1];  [2];  [2];  [3]; ORCiD logo [4];  [3]; ORCiD logo [2]; ORCiD logo [5]; ORCiD logo [2]; ORCiD logo [2]
  1. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Molecular Foundry; Univ. of California, Berkeley, CA (United States)
  2. Georgia Institute of Technology, Atlanta, GA (United States)
  3. Univ. of Toronto, ON (Canada)
  4. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division & Advanced Light Source (ALS)
  5. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Molecular Foundry
Publication Date:
Research Org.:
Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); US Department of the Navy, Office of Naval Research (ONR); US Department of Education; National Science Foundation (NSF)
OSTI Identifier:
1807521
Alternate Identifier(s):
OSTI ID: 1786856
Grant/Contract Number:  
AC02-05CH11231; N00014-19-1-2162; P200A180075; ECCS-1542174
Resource Type:
Accepted Manuscript
Journal Name:
Applied Physics Letters
Additional Journal Information:
Journal Volume: 118; Journal Issue: 23; Journal ID: ISSN 0003-6951
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; doping; chemical compounds; x-ray scattering spectroscopy; ions and properties; thin films; electronic transport; thermoelectric effects; thermoelectric devices; electrical conductivity; polymers

Citation Formats

Gordon, Madeleine P., Gregory, Shawn A., Wooding, Jamie P., Ye, Shuyang, Su, Gregory M., Seferos, Dwight S., Losego, Mark D., Urban, Jeffrey J., Yee, Shannon K., and Menon, Akanksha K. Microstructure and heteroatom dictate the doping mechanism and thermoelectric properties of poly(alkyl-chalcogenophenes). United States: N. p., 2021. Web. doi:10.1063/5.0052604.
Gordon, Madeleine P., Gregory, Shawn A., Wooding, Jamie P., Ye, Shuyang, Su, Gregory M., Seferos, Dwight S., Losego, Mark D., Urban, Jeffrey J., Yee, Shannon K., & Menon, Akanksha K. Microstructure and heteroatom dictate the doping mechanism and thermoelectric properties of poly(alkyl-chalcogenophenes). United States. https://doi.org/10.1063/5.0052604
Gordon, Madeleine P., Gregory, Shawn A., Wooding, Jamie P., Ye, Shuyang, Su, Gregory M., Seferos, Dwight S., Losego, Mark D., Urban, Jeffrey J., Yee, Shannon K., and Menon, Akanksha K. Mon . "Microstructure and heteroatom dictate the doping mechanism and thermoelectric properties of poly(alkyl-chalcogenophenes)". United States. https://doi.org/10.1063/5.0052604. https://www.osti.gov/servlets/purl/1807521.
@article{osti_1807521,
title = {Microstructure and heteroatom dictate the doping mechanism and thermoelectric properties of poly(alkyl-chalcogenophenes)},
author = {Gordon, Madeleine P. and Gregory, Shawn A. and Wooding, Jamie P. and Ye, Shuyang and Su, Gregory M. and Seferos, Dwight S. and Losego, Mark D. and Urban, Jeffrey J. and Yee, Shannon K. and Menon, Akanksha K.},
abstractNote = {Heteroatom substitution can favorably alter electronic transport in conductive polymers to improve their thermoelectric performance. This study reports the spectroscopic, structural, and thermoelectric properties of poly(3–(3′,7′-dimethyloctyl) chalcogenophenes) or P3RX doped with 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ), where the heteroatom [X = thiophene (T), selenophene (Se), tellurophene (Te)], the doping methodology, and extent of doping are systematically varied. Spectroscopic measurements reveal that while all P3RX polymers are appreciably doped, the doping mechanism is inherently different. Poly(3-hexylthiophene) (P3HT, used as a control) and poly(3–(3′,7′-dimethyloctyl)tellurophene) (P3RTe) are doped primarily via integer charge transfer (ICT), whereas poly(3–(3′,7′-dimethyloctyl)selenophene) (P3RSe) and poly(3–(3′,7′-dimethyloctyl)thiophene) (P3RT) are doped via charge transfer complex (CTC) mechanisms. Despite these differences, all polymers saturate with roughly the same number of F4TCNQ counterions (1 dopant per 4 to 6 heterocycles), reinforcing the idea that the extent of charge transfer varies with the doping mechanism. Grazing incidence wide-angle x-ray scattering measurements provide insight into the structural driving forces behind different doping mechanisms—P3RT and P3RSe have similar microstructures in which F4TCNQ intercalates between the π-stacked backbones resulting in CTC doping (localized carriers), while P3HT and P3RTe have microstructures in which F4TCNQ intercalates in the alkyl side chain region, giving rise to ICT doping (delocalized carriers). These structural and spectroscopic observations shed light on why P3HT and P3RTe obtain electrical conductivities ca. 3 S/cm, while P3RT and P3RSe have conductivities <10−3 S/cm under the same thin film processing conditions. Ultimately, this work quantifies the effects of heteroatom, microstructural ordering, extent of doping, and doping mechanism, thereby providing rational guidance for designing future thermoelectric polymer-dopant systems.},
doi = {10.1063/5.0052604},
journal = {Applied Physics Letters},
number = 23,
volume = 118,
place = {United States},
year = {Mon Jun 07 00:00:00 EDT 2021},
month = {Mon Jun 07 00:00:00 EDT 2021}
}

Works referenced in this record:

The Effects of Crystallinity on Charge Transport and the Structure of Sequentially Processed F 4 TCNQ-Doped Conjugated Polymer Films
journal, September 2017

  • Scholes, D. Tyler; Yee, Patrick Y.; Lindemuth, Jeffrey R.
  • Advanced Functional Materials, Vol. 27, Issue 44
  • DOI: 10.1002/adfm.201702654

Self-Organization and Charge Transport Properties of Selenium and Tellurium Analogues of Polythiophene
journal, November 2018

  • Ye, Shuyang; Janasz, Lukasz; Zajaczkowski, Wojciech
  • Macromolecular Rapid Communications, Vol. 40, Issue 1
  • DOI: 10.1002/marc.201800596

Examining Structure–Property–Function Relationships in Thiophene, Selenophene, and Tellurophene Homopolymers
journal, September 2018

  • Manion, Joseph G.; Ye, Shuyang; Proppe, Andrew H.
  • ACS Applied Energy Materials, Vol. 1, Issue 9
  • DOI: 10.1021/acsaem.8b01023

Charge-transport model for conducting polymers
journal, November 2016

  • Kang, Stephen Dongmin; Snyder, G. Jeffrey
  • Nature Materials, Vol. 16, Issue 2
  • DOI: 10.1038/nmat4784

Understanding the Effects of Molecular Dopant on n‐Type Organic Thermoelectric Properties
journal, May 2019

  • Un, Hio‐Ieng; Gregory, Shawn A.; Mohapatra, Swagat K.
  • Advanced Energy Materials, Vol. 9, Issue 24
  • DOI: 10.1002/aenm.201900817

Conductive, Solution‐Processed Dioxythiophene Copolymers for Thermoelectric and Transparent Electrode Applications
journal, May 2019

  • Ponder, James F.; Menon, Akanksha K.; Dasari, Raghunath R.
  • Advanced Energy Materials, Vol. 9, Issue 24
  • DOI: 10.1002/aenm.201900395

Influence of dopant size and electron affinity on the electrical conductivity and thermoelectric properties of a series of conjugated polymers
journal, January 2018

  • Liang, Zhiming; Zhang, Yadong; Souri, Maryam
  • Journal of Materials Chemistry A, Vol. 6, Issue 34
  • DOI: 10.1039/C8TA05922E

Enhanced Thermoelectric Power Factor of Tensile Drawn Poly(3-hexylthiophene)
journal, December 2018


Dopant-Induced Ordering of Amorphous Regions in Regiorandom P3HT
journal, August 2019

  • Yee, Patrick Y.; Scholes, D. Tyler; Schwartz, Benjamin J.
  • The Journal of Physical Chemistry Letters, Vol. 10, Issue 17
  • DOI: 10.1021/acs.jpclett.9b02070

Closing the Stability–Performance Gap in Organic Thermoelectrics by Adjusting the Partial to Integer Charge Transfer Ratio
journal, January 2020


Stability of Charge Transfer States in F 4 TCNQ-Doped P3HT
journal, December 2018


Double doping of conjugated polymers with monomer molecular dopants
journal, January 2019


Correlation of Coexistent Charge Transfer States in F 4 TCNQ-Doped P3HT with Microstructure
journal, November 2018

  • Neelamraju, Bharati; Watts, Kristen E.; Pemberton, Jeanne E.
  • The Journal of Physical Chemistry Letters, Vol. 9, Issue 23
  • DOI: 10.1021/acs.jpclett.8b03104

Evaporation vs Solution Sequential Doping of Conjugated Polymers: F 4 TCNQ Doping of Micrometer-Thick P3HT Films for Thermoelectrics
journal, August 2019

  • Fontana, Matthew T.; Stanfield, Dane A.; Scholes, D. Tyler
  • The Journal of Physical Chemistry C, Vol. 123, Issue 37
  • DOI: 10.1021/acs.jpcc.9b05069

Effect of Heteroatom and Doping on the Thermoelectric Properties of Poly(3-alkylchalcogenophenes)
journal, October 2018

  • Gregory, Shawn A.; Menon, Akanksha K.; Ye, Shuyang
  • Advanced Energy Materials, Vol. 8, Issue 34
  • DOI: 10.1002/aenm.201802419

New horizons in thermoelectric materials: Correlated electrons, organic transport, machine learning, and more
journal, May 2019

  • Urban, Jeffrey J.; Menon, Akanksha K.; Tian, Zhiting
  • Journal of Applied Physics, Vol. 125, Issue 18
  • DOI: 10.1063/1.5092525

Semiconducting Polymers Containing Tellurium: Perspectives Toward Obtaining High-Performance Materials
journal, December 2014

  • Carrera, Elisa I.; Seferos, Dwight S.
  • Macromolecules, Vol. 48, Issue 2
  • DOI: 10.1021/ma502307b

Towards polymer-based organic thermoelectric generators
journal, January 2012

  • Bubnova, Olga; Crispin, Xavier
  • Energy & Environmental Science, Vol. 5, Issue 11
  • DOI: 10.1039/c2ee22777k

Poly(3-alkyltellurophene)s Are Solution-Processable Polyheterocycles
journal, January 2013

  • Jahnke, Ashlee A.; Djukic, Brandon; McCormick, Theresa M.
  • Journal of the American Chemical Society, Vol. 135, Issue 3
  • DOI: 10.1021/ja309404j

Branched Side Chains Govern Counterion Position and Doping Mechanism in Conjugated Polythiophenes
journal, November 2018


Inducing planarity in redox-active conjugated polymers with solubilizing 3,6-dialkoxy-thieno[3,2- b ]thiophenes (DOTTs) for redox and solid-state conductivity applications
journal, January 2020

  • Pittelli, Sandra L.; Gregory, Shawn A.; Ponder, James F.
  • Journal of Materials Chemistry C, Vol. 8, Issue 22
  • DOI: 10.1039/D0TC00914H

Electron transport in a sequentially doped naphthalene diimide polymer
journal, January 2020

  • Al Kurdi, Khaled; Gregory, Shawn A.; Jhulki, Samik
  • Materials Advances, Vol. 1, Issue 6
  • DOI: 10.1039/D0MA00406E

Thermally Induced Formation of HF 4 TCNQ in F 4 TCNQ-Doped Regioregular P3HT
journal, July 2020

  • Watts, Kristen E.; Neelamraju, Bharati; Moser, Maximilian
  • The Journal of Physical Chemistry Letters, Vol. 11, Issue 16
  • DOI: 10.1021/acs.jpclett.0c01673

Intersystem Subpopulation Charge Transfer and Conformational Relaxation Preceding in Situ Conductivity in Electrochemically Doped Poly(3-hexylthiophene) Electrodes
journal, December 2018


Bringing Conducting Polymers to High Order: Toward Conductivities beyond 10 5 S cm −1 and Thermoelectric Power Factors of 2 mW m −1 K −2
journal, May 2019

  • Vijayakumar, Vishnu; Zhong, Yuhan; Untilova, Viktoriia
  • Advanced Energy Materials, Vol. 9, Issue 24
  • DOI: 10.1002/aenm.201900266

Selenophene Electronics
journal, April 2014

  • Hollinger, Jon; Gao, Dong; Seferos, Dwight S.
  • Israel Journal of Chemistry, Vol. 54, Issue 5-6
  • DOI: 10.1002/ijch.201400011

Thermoelectric plastics: from design to synthesis, processing and structure–property relationships
journal, January 2016

  • Kroon, Renee; Mengistie, Desalegn Alemu; Kiefer, David
  • Chemical Society Reviews, Vol. 45, Issue 22
  • DOI: 10.1039/C6CS00149A

Radial thermoelectric generator fabricated from n- and p-type conducting polymers
journal, July 2016

  • Menon, Akanksha K.; Meek, Olivia; Eng, Arnold J.
  • Journal of Applied Polymer Science, Vol. 134, Issue 3
  • DOI: 10.1002/app.44060

Modulation of the Work Function by the Atomic Structure of Strong Organic Electron Acceptors on H‐Si(111)
journal, March 2019

  • Wang, Haiyuan; Levchenko, Sergey V.; Schultz, Thorsten
  • Advanced Electronic Materials, Vol. 5, Issue 5
  • DOI: 10.1002/aelm.201800891

Polyselenophenes with distinct crystallization properties
journal, January 2011

  • Li, Lianshan; Hollinger, Jon; Jahnke, Ashlee A.
  • Chemical Science, Vol. 2, Issue 12
  • DOI: 10.1039/c1sc00415h

A Textile‐Integrated Polymer Thermoelectric Generator for Body Heat Harvesting
journal, April 2019

  • Elmoughni, Hend M.; Menon, Akanksha K.; Wolfe, Rylan M. W.
  • Advanced Materials Technologies, Vol. 4, Issue 7
  • DOI: 10.1002/admt.201800708

Controlling the Formation of Charge Transfer Complexes in Chemically Doped Semiconducting Polymers
journal, March 2021


Complex Relationship between Side-Chain Polarity, Conductivity, and Thermal Stability in Molecularly Doped Conjugated Polymers
journal, January 2021


Comparison of solution-mixed and sequentially processed P3HT:F4TCNQ films: effect of doping-induced aggregation on film morphology
journal, January 2016

  • Jacobs, Ian E.; Aasen, Erik W.; Oliveira, Julia L.
  • J. Mater. Chem. C, Vol. 4, Issue 16
  • DOI: 10.1039/C5TC04207K

Charge-transfer crystallites as molecular electrical dopants
journal, October 2015

  • Méndez, Henry; Heimel, Georg; Winkler, Stefanie
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms9560

Thermoelectric and Charge Transport Properties of Solution-Processable and Chemically Doped Dioxythienothiophene Copolymers
journal, April 2021

  • Gregory, Shawn A.; Ponder, James F.; Pittelli, Sandra L.
  • ACS Applied Polymer Materials, Vol. 3, Issue 5
  • DOI: 10.1021/acsapm.1c00093