DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Design and synthesis of aryl-functionalized carbazole-based porous coordination cages

Abstract

A subset of coordination cages have garnered considerable recent attention for their potential permanent porosity in the solid state. Herein, we report a series of functionalized carbazole-based cages of the structure type M12(R-cdc)12 (M = Cr, Cu, Mo) where the functional groups include a range of aromatic substituents. Single-crystal X-ray structure determinations reveal a variety of intercage interactions in these materials, largely governed by pi–pi stacking. Density functional theory for a subset of these cages was used to confirm that the nature of the increased stability of aryl-functionalized cages is a result of inter-cage ligand interactions.

Authors:
 [1];  [2]; ORCiD logo [3];  [3]; ORCiD logo [1]; ORCiD logo [4]
  1. Univ. of Delaware, Newark, DE (United States). Dept. of Chemistry and Biochemistry
  2. Univ. of Delaware, Newark, DE (United States). Dept. of Chemistry and Biochemistry. Center for Neutron Science. Dept. of Chemical and Biomolecular Engineering
  3. Univ. of Delaware, Newark, DE (United States). Catalysis Center for Energy Innovation (CCEI)
  4. Univ. of Delaware, Newark, DE (United States). Dept. of Chemistry and Biochemistry. Center for Neutron Science. Dept. of Chemical and Biomolecular Engineering. Catalysis Center for Energy Innovation (CCEI)
Publication Date:
Research Org.:
Univ. of Delaware, Newark, DE (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1801384
Alternate Identifier(s):
OSTI ID: 1638754
Grant/Contract Number:  
SC0001004; AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
ChemComm
Additional Journal Information:
Journal Volume: 56; Journal Issue: 65; Journal ID: ISSN 1359-7345
Publisher:
Royal Society of Chemistry
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Rowland, Casey A., Lorzing, Gregory R., Bhattacharjee, Rameswar, Caratzoulas, Stavros, Yap, Glenn P. A., and Bloch, Eric D. Design and synthesis of aryl-functionalized carbazole-based porous coordination cages. United States: N. p., 2020. Web. doi:10.1039/d0cc03910a.
Rowland, Casey A., Lorzing, Gregory R., Bhattacharjee, Rameswar, Caratzoulas, Stavros, Yap, Glenn P. A., & Bloch, Eric D. Design and synthesis of aryl-functionalized carbazole-based porous coordination cages. United States. https://doi.org/10.1039/d0cc03910a
Rowland, Casey A., Lorzing, Gregory R., Bhattacharjee, Rameswar, Caratzoulas, Stavros, Yap, Glenn P. A., and Bloch, Eric D. Fri . "Design and synthesis of aryl-functionalized carbazole-based porous coordination cages". United States. https://doi.org/10.1039/d0cc03910a. https://www.osti.gov/servlets/purl/1801384.
@article{osti_1801384,
title = {Design and synthesis of aryl-functionalized carbazole-based porous coordination cages},
author = {Rowland, Casey A. and Lorzing, Gregory R. and Bhattacharjee, Rameswar and Caratzoulas, Stavros and Yap, Glenn P. A. and Bloch, Eric D.},
abstractNote = {A subset of coordination cages have garnered considerable recent attention for their potential permanent porosity in the solid state. Herein, we report a series of functionalized carbazole-based cages of the structure type M12(R-cdc)12 (M = Cr, Cu, Mo) where the functional groups include a range of aromatic substituents. Single-crystal X-ray structure determinations reveal a variety of intercage interactions in these materials, largely governed by pi–pi stacking. Density functional theory for a subset of these cages was used to confirm that the nature of the increased stability of aryl-functionalized cages is a result of inter-cage ligand interactions.},
doi = {10.1039/d0cc03910a},
journal = {ChemComm},
number = 65,
volume = 56,
place = {United States},
year = {Fri Jul 03 00:00:00 EDT 2020},
month = {Fri Jul 03 00:00:00 EDT 2020}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 8 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Chromium(II) Metal–Organic Polyhedra as Highly Porous Materials
journal, August 2017

  • Park, Jinhee; Perry, Zachary; Chen, Ying-Pin
  • ACS Applied Materials & Interfaces, Vol. 9, Issue 33
  • DOI: 10.1021/acsami.7b09339

Ligand-Based Phase Control in Porous Molecular Assemblies
journal, March 2018

  • Barreda, Omar; Bannwart, Gianluca; Yap, Glenn P. A.
  • ACS Applied Materials & Interfaces, Vol. 10, Issue 14
  • DOI: 10.1021/acsami.8b02015

Porous organic cages
journal, October 2009

  • Tozawa, Tomokazu; Jones, James T. A.; Swamy, Shashikala I.
  • Nature Materials, Vol. 8, Issue 12, p. 973-978
  • DOI: 10.1038/nmat2545

Surface functionalization of metal–organic polyhedron for homogeneous cyclopropanation catalysis
journal, January 2011

  • Lu, Weigang; Yuan, Daqiang; Yakovenko, Andrey
  • Chemical Communications, Vol. 47, Issue 17
  • DOI: 10.1039/c1cc00030f

Design and Synthesis of Porous Nickel(II) and Cobalt(II) Cages
journal, May 2018


Adsorption Contraction Mechanics: Understanding Breathing Energetics in Isoreticular Metal–Organic Frameworks
journal, July 2018

  • Krause, Simon; Evans, Jack D.; Bon, Volodymyr
  • The Journal of Physical Chemistry C, Vol. 122, Issue 33
  • DOI: 10.1021/acs.jpcc.8b04549

A pressure-amplifying framework material with negative gas adsorption transitions
journal, April 2016

  • Krause, Simon; Bon, Volodymyr; Senkovska, Irena
  • Nature, Vol. 532, Issue 7599
  • DOI: 10.1038/nature17430

Methane Storage in Paddlewheel-Based Porous Coordination Cages
journal, August 2018

  • Rowland, Casey A.; Lorzing, Gregory R.; Gosselin, Eric J.
  • Journal of the American Chemical Society, Vol. 140, Issue 36
  • DOI: 10.1021/jacs.8b05780

Metal–organic polyhedra constructed from dinuclear ruthenium paddlewheels
journal, January 2015


Understanding Gas Storage in Cuboctahedral Porous Coordination Cages
journal, July 2019

  • Lorzing, Gregory R.; Gosselin, Eric J.; Trump, Benjamin A.
  • Journal of the American Chemical Society, Vol. 141, Issue 30
  • DOI: 10.1021/jacs.9b05872

Assembly of metal–organic polyhedra into highly porous frameworks for ethene delivery
journal, January 2015

  • Stoeck, Ulrich; Senkovska, Irena; Bon, Volodymyr
  • Chemical Communications, Vol. 51, Issue 6
  • DOI: 10.1039/C4CC07920E

Metal-organic polyhedra 18 mixed-matrix membranes for gas separation
journal, August 2014


Highly efficient photocatalytic hydrogen production from pure water via a photoactive metal–organic framework and its PDMS@MOF
journal, January 2017

  • Wu, Pengyan; Jiang, Min; Li, Yang
  • Journal of Materials Chemistry A, Vol. 5, Issue 17
  • DOI: 10.1039/C7TA01070B

Suprasupermolecular Chemistry:  Infinite Networks from Nanoscale Metal−Organic Building Blocks
journal, January 2004

  • McManus, Gregory J.; Wang, Zhenqiang; Zaworotko, Michael J.
  • Crystal Growth & Design, Vol. 4, Issue 1
  • DOI: 10.1021/cg034199d

Azobenzene-Functionalized Metal-Organic Polyhedra for the Optically Responsive Capture and Release of Guest Molecules
journal, May 2014

  • Park, Jinhee; Sun, Lin-Bing; Chen, Ying-Pin
  • Angewandte Chemie International Edition, Vol. 53, Issue 23
  • DOI: 10.1002/anie.201310211

Rhodium–Organic Cuboctahedra as Porous Solids with Strong Binding Sites
journal, October 2016


CO 2 capture in a carbazole-based supramolecular polyhedron structure: the significance of Cu( ii ) open metal sites
journal, January 2017

  • López-Olvera, Alfredo; Sánchez-González, Elí; Campos-Reales-Pineda, Alberto
  • Inorganic Chemistry Frontiers, Vol. 4, Issue 1
  • DOI: 10.1039/C6QI00342G

Porous Metal−Organic Polyhedra:  25 Å Cuboctahedron Constructed from 12 Cu2(CO2)4 Paddle-Wheel Building Blocks
journal, May 2001

  • Eddaoudi, M.; Kim, Jaheon; Wachter, J. B.
  • Journal of the American Chemical Society, Vol. 123, Issue 18, p. 4368-4369
  • DOI: 10.1021/ja0104352

Porous organic molecular solids by dynamic covalent scrambling
journal, February 2011

  • Jiang, Shan; Jones, James T. A.; Hasell, Tom
  • Nature Communications, Vol. 2, Issue 1
  • DOI: 10.1038/ncomms1207

MOF-mimetic molecules: carboxylate-based supramolecular complexes as molecular metal–organic framework analogues
journal, January 2020

  • Decker, Gerald E.; Lorzing, Gregory R.; Deegan, Meaghan M.
  • Journal of Materials Chemistry A, Vol. 8, Issue 8
  • DOI: 10.1039/C9TA12497G

Stabilizing Metal–Organic Polyhedra (MOP): Issues and Strategies
journal, August 2019

  • Mollick, Samraj; Fajal, Sahel; Mukherjee, Soumya
  • Chemistry – An Asian Journal, Vol. 14, Issue 18
  • DOI: 10.1002/asia.201900800

Discovery and introduction of a (3,18)-connected net as an ideal blueprint for the design of metal–organic frameworks
journal, June 2014

  • Guillerm, Vincent; Weseliński, Łukasz J.; Belmabkhout, Youssef
  • Nature Chemistry, Vol. 6, Issue 8
  • DOI: 10.1038/nchem.1982

Reticular Chemistry of Metal–Organic Polyhedra
journal, June 2008

  • Tranchemontagne, David J.; Ni, Zheng; O'Keeffe, Michael
  • Angewandte Chemie International Edition, Vol. 47, Issue 28, p. 5136-5147
  • DOI: 10.1002/anie.200705008

Interconversion between Molecular Polyhedra and Metal−Organic Frameworks
journal, May 2009

  • Li, Jian-Rong; Timmons, Daren J.; Zhou, Hong-Cai
  • Journal of the American Chemical Society, Vol. 131, Issue 18
  • DOI: 10.1021/ja901731z

Ligand Bridging-Angle-Driven Assembly of Molecular Architectures Based on Quadruply Bonded Mo−Mo Dimers
journal, December 2010

  • Li, Jian-Rong; Yakovenko, Andrey A.; Lu, Weigang
  • Journal of the American Chemical Society, Vol. 132, Issue 49
  • DOI: 10.1021/ja1080794

Design and synthesis of capped-paddlewheel-based porous coordination cages
journal, January 2019

  • Lorzing, Gregory R.; Gosselin, Eric J.; Lindner, Brian S.
  • Chemical Communications, Vol. 55, Issue 64
  • DOI: 10.1039/C9CC05002G

High-Symmetry Coordination Cages via Self-Assembly
journal, November 2002

  • Seidel, S. Russell; Stang, Peter J.
  • Accounts of Chemical Research, Vol. 35, Issue 11
  • DOI: 10.1021/ar010142d