DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Investigation of heat transport using directly driven gold spheres

Abstract

Recently, heat transport was investigated using a directly driven beryllium sphere [Farmer et al., Phys. Plasmas 27, 082701 (2020)]. Models that overly restrict heat transport were rejected. This paper extends work to directly driven gold spheres where radiation loss is more important. Here, gold coated spheres are directly driven at the OMEGA laser facility at intensities of 5×1014 W/cm2. Plasma conditions, laser coupling, and x-ray flux are all measured. Additionally, comparisons to 2D radiation-hydrodynamic simulations are performed. Simulations use three common heat transport models: local transport with flux limiters of f = 0.15 and f = 0.03, and the nonlocal Schurtz–Nicolai–Busquet (SNB) model. It is shown that both the SNB model and f = 0.15 match the measured plasma conditions with the SNB model better capturing the temporal evolution of electron temperature. The f = 0.03 model predicts too low of an electron density and too hot of a temperature. The measured scattered light is roughly 6% of the incident energy, the f = 0.15 and SNB models predict 0.5% uncoupled light, and f = 0.03, 38% uncoupled light. The x-ray fluxes in the f = 0.15 and SNB simulations rise too quickly and are just outside the measurement's error,more » while the x-ray flux in the f = 0.03 simulation is low by a factor of two-three. For these reasons, the f = 0.03 model is rejected.« less

Authors:
ORCiD logo [1];  [1]; ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [1];  [3]; ORCiD logo [1];  [1]; ORCiD logo [4]; ORCiD logo [4];  [1]
  1. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  2. Univ. of Alberta, Edmonton, AB (Canada)
  3. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Univ. of Alberta, Edmonton, AB (Canada)
  4. Univ. of Rochester, NY (United States). Lab. for Laser Energetics
Publication Date:
Research Org.:
Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1777337
Alternate Identifier(s):
OSTI ID: 1970621
Report Number(s):
LLNL-JRNL-817605
Journal ID: ISSN 1070-664X; 1027293; TRN: US2209440
Grant/Contract Number:  
AC52-07NA27344
Resource Type:
Accepted Manuscript
Journal Name:
Physics of Plasmas
Additional Journal Information:
Journal Volume: 28; Journal Issue: 3; Journal ID: ISSN 1070-664X
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; Thermodynamic states and processes; geometrical optics; radiation losses; streak cameras; plasma waves; Thomson scattering; laser coupling; hydrodynamics simulations

Citation Formats

Farmer, W. A., Rosen, M. D., Swadling, G. F., Bruulsema, C., Harris, C. D., Rozmus, W., Schneider, M. B., Sherlock, M. W., Edgell, D. H., Katz, J., and Ross, J. S. Investigation of heat transport using directly driven gold spheres. United States: N. p., 2021. Web. doi:10.1063/5.0040320.
Farmer, W. A., Rosen, M. D., Swadling, G. F., Bruulsema, C., Harris, C. D., Rozmus, W., Schneider, M. B., Sherlock, M. W., Edgell, D. H., Katz, J., & Ross, J. S. Investigation of heat transport using directly driven gold spheres. United States. https://doi.org/10.1063/5.0040320
Farmer, W. A., Rosen, M. D., Swadling, G. F., Bruulsema, C., Harris, C. D., Rozmus, W., Schneider, M. B., Sherlock, M. W., Edgell, D. H., Katz, J., and Ross, J. S. Mon . "Investigation of heat transport using directly driven gold spheres". United States. https://doi.org/10.1063/5.0040320. https://www.osti.gov/servlets/purl/1777337.
@article{osti_1777337,
title = {Investigation of heat transport using directly driven gold spheres},
author = {Farmer, W. A. and Rosen, M. D. and Swadling, G. F. and Bruulsema, C. and Harris, C. D. and Rozmus, W. and Schneider, M. B. and Sherlock, M. W. and Edgell, D. H. and Katz, J. and Ross, J. S.},
abstractNote = {Recently, heat transport was investigated using a directly driven beryllium sphere [Farmer et al., Phys. Plasmas 27, 082701 (2020)]. Models that overly restrict heat transport were rejected. This paper extends work to directly driven gold spheres where radiation loss is more important. Here, gold coated spheres are directly driven at the OMEGA laser facility at intensities of 5×1014 W/cm2. Plasma conditions, laser coupling, and x-ray flux are all measured. Additionally, comparisons to 2D radiation-hydrodynamic simulations are performed. Simulations use three common heat transport models: local transport with flux limiters of f = 0.15 and f = 0.03, and the nonlocal Schurtz–Nicolai–Busquet (SNB) model. It is shown that both the SNB model and f = 0.15 match the measured plasma conditions with the SNB model better capturing the temporal evolution of electron temperature. The f = 0.03 model predicts too low of an electron density and too hot of a temperature. The measured scattered light is roughly 6% of the incident energy, the f = 0.15 and SNB models predict 0.5% uncoupled light, and f = 0.03, 38% uncoupled light. The x-ray fluxes in the f = 0.15 and SNB simulations rise too quickly and are just outside the measurement's error, while the x-ray flux in the f = 0.03 simulation is low by a factor of two-three. For these reasons, the f = 0.03 model is rejected.},
doi = {10.1063/5.0040320},
journal = {Physics of Plasmas},
number = 3,
volume = 28,
place = {United States},
year = {Mon Mar 15 00:00:00 EDT 2021},
month = {Mon Mar 15 00:00:00 EDT 2021}
}

Works referenced in this record:

A pulse-front-tilt–compensated streaked optical spectrometer with high throughput and picosecond time resolution
journal, August 2016

  • Katz, J.; Boni, R.; Rivlis, R.
  • Review of Scientific Instruments, Vol. 87, Issue 11
  • DOI: 10.1063/1.4961090

Return current instability driven by a temperature gradient in ICF plasmas
journal, October 2017

  • Rozmus, W.; Brantov, A. V.; Sherlock, M.
  • Plasma Physics and Controlled Fusion, Vol. 60, Issue 1
  • DOI: 10.1088/1361-6587/aa868d

The interaction of 1.06 μm laser radiation with high Z disk targets
journal, January 1979

  • Rosen, M. D.; Phillion, D. W.; Rupert, V. C.
  • Physics of Fluids, Vol. 22, Issue 10
  • DOI: 10.1063/1.862501

Testing nonlocal models of electron thermal conduction for magnetic and inertial confinement fusion applications
journal, September 2017

  • Brodrick, J. P.; Kingham, R. J.; Marinak, M. M.
  • Physics of Plasmas, Vol. 24, Issue 9
  • DOI: 10.1063/1.5001079

Simulation of self-generated magnetic fields in an inertial fusion hohlraum environment
journal, May 2017

  • Farmer, W. A.; Koning, J. M.; Strozzi, D. J.
  • Physics of Plasmas, Vol. 24, Issue 5
  • DOI: 10.1063/1.4983140

Evolution of the Electron Distribution Function in the Presence of Inverse Bremsstrahlung Heating and Collisional Ionization
journal, January 2020


Recent results on Nova
journal, September 1994

  • Rosen, Mordecai D.; Lindl, John D.; Kilkenny, J. D.
  • Journal of Fusion Energy, Vol. 13, Issue 2-3
  • DOI: 10.1007/BF02213953

Development of a directly driven multi-shell platform: Laser drive energetics
journal, February 2020

  • Krasheninnikova, Natalia S.; Schmitt, M. J.; Molvig, Kim
  • Physics of Plasmas, Vol. 27, Issue 2
  • DOI: 10.1063/1.5100518

A high-resolution integrated model of the National Ignition Campaign cryogenic layered experiments
journal, May 2012

  • Jones, O. S.; Cerjan, C. J.; Marinak, M. M.
  • Physics of Plasmas, Vol. 19, Issue 5
  • DOI: 10.1063/1.4718595

Radiation Hydrodynamics
book, January 2004


The development of a Krook model for nonlocal transport in laser produced plasmas. I. Basic theory
journal, August 2008

  • Manheimer, Wallace; Colombant, Denis; Goncharov, Valeri
  • Physics of Plasmas, Vol. 15, Issue 8
  • DOI: 10.1063/1.2963078

Evidence of restricted heat transport in National Ignition Facility Hohlraums
journal, October 2020

  • Meezan, N. B.; Woods, D. T.; Izumi, N.
  • Physics of Plasmas, Vol. 27, Issue 10
  • DOI: 10.1063/5.0018733

A nonlocal electron conduction model for multidimensional radiation hydrodynamics codes
journal, January 2000

  • Schurtz, G. P.; Nicolaï, Ph. D.; Busquet, M.
  • Physics of Plasmas, Vol. 7, Issue 10
  • DOI: 10.1063/1.1289512

Non-Maxwellian electron distributions and continuum X-ray emission in inverse Bremsstrahlung heated plasmas
journal, November 1988


Moment approach to deriving parallel heat flow for general collisionality
journal, February 2009

  • Ji, Jeong-Young; Held, Eric D.; Sovinec, Carl R.
  • Physics of Plasmas, Vol. 16, Issue 2
  • DOI: 10.1063/1.3079072

Omega Dante soft x-ray power diagnostic component calibration at the National Synchrotron Light Source
journal, October 2004

  • Campbell, K. M.; Weber, F. A.; Dewald, E. L.
  • Review of Scientific Instruments, Vol. 75, Issue 10
  • DOI: 10.1063/1.1789603

Analysis of the National Ignition Facility ignition hohlraum energetics experiments
journal, May 2011

  • Town, R. P. J.; Rosen, M. D.; Michel, P. A.
  • Physics of Plasmas, Vol. 18, Issue 5
  • DOI: 10.1063/1.3562552

Elecron Energy Transport in Steep Temperature Gradients in Laser-Produced Plasmas
journal, January 1981


Uncertainty analysis technique for OMEGA Dante measurements
journal, October 2010

  • May, M. J.; Widmann, K.; Sorce, C.
  • Review of Scientific Instruments, Vol. 81, Issue 10
  • DOI: 10.1063/1.3475385

The first measurements of soft x-ray flux from ignition scale Hohlraums at the National Ignition Facility using DANTE (invited)
journal, October 2010

  • Kline, J. L.; Widmann, K.; Warrick, A.
  • Review of Scientific Instruments, Vol. 81, Issue 10
  • DOI: 10.1063/1.3491032

Nonlinear Inverse Bremsstrahlung and Heated-Electron Distributions
journal, March 1980


A fast non-Fourier method for Landau-fluid operators
journal, May 2014

  • Dimits, A. M.; Joseph, I.; Umansky, M. V.
  • Physics of Plasmas, Vol. 21, Issue 5
  • DOI: 10.1063/1.4876617

Validation of heat transport modeling using directly driven beryllium spheres
journal, August 2020

  • Farmer, W. A.; Bruulsema, C.; Swadling, G. F.
  • Physics of Plasmas, Vol. 27, Issue 8
  • DOI: 10.1063/5.0005776

Dante soft x-ray power diagnostic for National Ignition Facility
journal, October 2004

  • Dewald, E. L.; Campbell, K. M.; Turner, R. E.
  • Review of Scientific Instruments, Vol. 75, Issue 10
  • DOI: 10.1063/1.1788872

X-ray conversion efficiency in vacuum hohlraum experiments at the National Ignition Facility
journal, May 2012

  • Olson, R. E.; Suter, L. J.; Kline, J. L.
  • Physics of Plasmas, Vol. 19, Issue 5
  • DOI: 10.1063/1.4704795

A reflective optical transport system for ultraviolet Thomson scattering from electron plasma waves on OMEGA
journal, October 2012

  • Katz, J.; Boni, R.; Sorce, C.
  • Review of Scientific Instruments, Vol. 83, Issue 10
  • DOI: 10.1063/1.4733551

Theory of stimulated scattering processes in laser-irradiated plasmas
journal, January 1975

  • Forslund, D. W.; Kindel, J. M.; Lindman, E. L.
  • Physics of Fluids, Vol. 18, Issue 8
  • DOI: 10.1063/1.861248

Direct-drive inertial confinement fusion: A review
journal, November 2015

  • Craxton, R. S.; Anderson, K. S.; Boehly, T. R.
  • Physics of Plasmas, Vol. 22, Issue 11
  • DOI: 10.1063/1.4934714

A practical nonlocal model for heat transport in magnetized laser plasmas
journal, March 2006

  • Nicolaï, Ph. D.; Feugeas, J. -L. A.; Schurtz, G. P.
  • Physics of Plasmas, Vol. 13, Issue 3
  • DOI: 10.1063/1.2179392

The physics basis for ignition using indirect-drive targets on the National Ignition Facility
journal, February 2004

  • Lindl, John D.; Amendt, Peter; Berger, Richard L.
  • Physics of Plasmas, Vol. 11, Issue 2
  • DOI: 10.1063/1.1578638

The role of a detailed configuration accounting (DCA) atomic physics package in explaining the energy balance in ignition-scale hohlraums
journal, September 2011


Detailed characterization of laser plasmas for benchmarking of radiation-hydrodynamic modeling
journal, April 2000

  • Glenzer, S. H.; Estabrook, K. G.; Lee, R. W.
  • Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 65, Issue 1-3
  • DOI: 10.1016/S0022-4073(99)00072-2

Use of a priori spectral information in the measurement of x-ray flux with filtered diode arrays
journal, October 2015

  • Marrs, R. E.; Widmann, K.; Brown, G. V.
  • Review of Scientific Instruments, Vol. 86, Issue 10
  • DOI: 10.1063/1.4934542

X-ray conversion efficiency of high-Z hohlraum wall materials for indirect drive ignition
journal, July 2008

  • Dewald, E. L.; Rosen, M.; Glenzer, S. H.
  • Physics of Plasmas, Vol. 15, Issue 7
  • DOI: 10.1063/1.2943700

Radiation drive in laser‐heated hohlraums
journal, May 1996

  • Suter, L. J.; Kauffman, R. L.; Darrow, C. B.
  • Physics of Plasmas, Vol. 3, Issue 5
  • DOI: 10.1063/1.872002

High-Gain Magnetized Inertial Fusion
journal, January 2012


Progress towards a more predictive model for hohlraum radiation drive and symmetry
journal, May 2017

  • Jones, O. S.; Suter, L. J.; Scott, H. A.
  • Physics of Plasmas, Vol. 24, Issue 5
  • DOI: 10.1063/1.4982693

Parametric instabilities of electromagnetic waves in plasmas
journal, January 1974


Electron distribution function in laser heated plasmas
journal, February 2001

  • Fourkal, E.; Bychenkov, V. Yu.; Rozmus, W.
  • Physics of Plasmas, Vol. 8, Issue 2
  • DOI: 10.1063/1.1334611

Plasma characterization using ultraviolet Thomson scattering from ion-acoustic and electron plasma waves (invited)
journal, July 2016

  • Follett, R. K.; Delettrez, J. A.; Edgell, D. H.
  • Review of Scientific Instruments, Vol. 87, Issue 11
  • DOI: 10.1063/1.4959160

Crossed-beam energy transfer in implosion experiments on OMEGA
journal, December 2010

  • Igumenshchev, I. V.; Edgell, D. H.; Goncharov, V. N.
  • Physics of Plasmas, Vol. 17, Issue 12
  • DOI: 10.1063/1.3532817