DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Melt-Centrifuged (Bi,Sb)2Te3: Engineering Microstructure toward High Thermoelectric Efficiency

Abstract

Abstract Microstructure engineering is an effective strategy to reduce lattice thermal conductivity (κ l ) and enhance the thermoelectric figure of merit ( zT ). Through a new process based on melt‐centrifugation to squeeze out excess eutectic liquid, microstructure modulation is realized to manipulate the formation of dislocations and clean grain boundaries, resulting in a porous network with a platelet structure. In this way, phonon transport is strongly disrupted by a combination of porosity, pore surfaces/junctions, grain boundaries, and lattice dislocations. These collectively result in a ≈60% reduction of κ l compared to zone melted ingot, while the charge carriers remain relatively mobile across the liquid‐fused grains. This porous material displays a zT value of 1.2, which is higher than fully dense conventional zone melted ingots and hot pressed (Bi,Sb) 2 Te 3 alloys. A segmented leg of melt‐centrifuged Bi 0.5 Sb 1.5 Te 3 and Bi 0.3 Sb 1.7 Te 3 could produce a high device ZT exceeding 1.0 over the whole temperature range of 323–523 K and an efficiency up to 9%. The present work demonstrates a method for synthesizing high‐efficiency porous thermoelectric materials through an unconventional melt‐centrifugation technique.

Authors:
 [1];  [2];  [3];  [3];  [3];  [3];  [3];  [4];  [4];  [4];  [4]; ORCiD logo [4];  [3];  [3]
  1. Tsinghua Univ., Beijing (China); Northwestern Univ., Evanston, IL (United States)
  2. Northwestern Univ., Evanston, IL (United States); Koc Univ., Istanbul (Turkey)
  3. Northwestern Univ., Evanston, IL (United States)
  4. Tsinghua Univ., Beijing (China)
Publication Date:
Research Org.:
Northwestern Univ., Evanston, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); National Natural Science Foundation of China (NSFC); National Science Foundation (NSF)
OSTI Identifier:
1775432
Alternate Identifier(s):
OSTI ID: 1464434
Grant/Contract Number:  
SC0014520; SC0001299; 51788104; 11474176; ECCS-1542205; DMR-1121262; DGE-1324585; DE‐SC0001299; DE‐SC0014520
Resource Type:
Accepted Manuscript
Journal Name:
Advanced Materials
Additional Journal Information:
Journal Volume: 30; Journal Issue: 34; Journal ID: ISSN 0935-9648
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE

Citation Formats

Pan, Yu, Aydemir, Umut, Grovogui, Jann A., Witting, Ian T., Hanus, Riley, Xu, Yaobin, Wu, Jinsong, Wu, Chao‐Feng, Sun, Fu‐Hua, Zhuang, Hua‐Lu, Dong, Jin‐Feng, Li, Jing‐Feng, Dravid, Vinayak P., and Snyder, G. Jeffrey. Melt-Centrifuged (Bi,Sb)2Te3: Engineering Microstructure toward High Thermoelectric Efficiency. United States: N. p., 2018. Web. doi:10.1002/adma.201802016.
Pan, Yu, Aydemir, Umut, Grovogui, Jann A., Witting, Ian T., Hanus, Riley, Xu, Yaobin, Wu, Jinsong, Wu, Chao‐Feng, Sun, Fu‐Hua, Zhuang, Hua‐Lu, Dong, Jin‐Feng, Li, Jing‐Feng, Dravid, Vinayak P., & Snyder, G. Jeffrey. Melt-Centrifuged (Bi,Sb)2Te3: Engineering Microstructure toward High Thermoelectric Efficiency. United States. https://doi.org/10.1002/adma.201802016
Pan, Yu, Aydemir, Umut, Grovogui, Jann A., Witting, Ian T., Hanus, Riley, Xu, Yaobin, Wu, Jinsong, Wu, Chao‐Feng, Sun, Fu‐Hua, Zhuang, Hua‐Lu, Dong, Jin‐Feng, Li, Jing‐Feng, Dravid, Vinayak P., and Snyder, G. Jeffrey. Sun . "Melt-Centrifuged (Bi,Sb)2Te3: Engineering Microstructure toward High Thermoelectric Efficiency". United States. https://doi.org/10.1002/adma.201802016. https://www.osti.gov/servlets/purl/1775432.
@article{osti_1775432,
title = {Melt-Centrifuged (Bi,Sb)2Te3: Engineering Microstructure toward High Thermoelectric Efficiency},
author = {Pan, Yu and Aydemir, Umut and Grovogui, Jann A. and Witting, Ian T. and Hanus, Riley and Xu, Yaobin and Wu, Jinsong and Wu, Chao‐Feng and Sun, Fu‐Hua and Zhuang, Hua‐Lu and Dong, Jin‐Feng and Li, Jing‐Feng and Dravid, Vinayak P. and Snyder, G. Jeffrey},
abstractNote = {Abstract Microstructure engineering is an effective strategy to reduce lattice thermal conductivity (κ l ) and enhance the thermoelectric figure of merit ( zT ). Through a new process based on melt‐centrifugation to squeeze out excess eutectic liquid, microstructure modulation is realized to manipulate the formation of dislocations and clean grain boundaries, resulting in a porous network with a platelet structure. In this way, phonon transport is strongly disrupted by a combination of porosity, pore surfaces/junctions, grain boundaries, and lattice dislocations. These collectively result in a ≈60% reduction of κ l compared to zone melted ingot, while the charge carriers remain relatively mobile across the liquid‐fused grains. This porous material displays a zT value of 1.2, which is higher than fully dense conventional zone melted ingots and hot pressed (Bi,Sb) 2 Te 3 alloys. A segmented leg of melt‐centrifuged Bi 0.5 Sb 1.5 Te 3 and Bi 0.3 Sb 1.7 Te 3 could produce a high device ZT exceeding 1.0 over the whole temperature range of 323–523 K and an efficiency up to 9%. The present work demonstrates a method for synthesizing high‐efficiency porous thermoelectric materials through an unconventional melt‐centrifugation technique.},
doi = {10.1002/adma.201802016},
journal = {Advanced Materials},
number = 34,
volume = 30,
place = {United States},
year = {Sun Jul 08 00:00:00 EDT 2018},
month = {Sun Jul 08 00:00:00 EDT 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 122 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Realizing high figure of merit in heavy-band p-type half-Heusler thermoelectric materials
journal, September 2015

  • Fu, Chenguang; Bai, Shengqiang; Liu, Yintu
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms9144

Scattering of Phonons by Elastic Strain Fields and the Thermal Resistance of Dislocations
journal, May 1959


Enhanced stability and thermoelectric figure-of-merit in copper selenide by lithium doping
journal, June 2017


Electrical conductivity in inhomogeneous media
conference, January 1978


High efficiency Bi 2 Te 3 -based materials and devices for thermoelectric power generation between 100 and 300 °C
journal, January 2016

  • Hao, Feng; Qiu, Pengfei; Tang, Yunshan
  • Energy & Environmental Science, Vol. 9, Issue 10
  • DOI: 10.1039/C6EE02017H

The Thermoelectric Figure of Merit and its Relation to Thermoelectric Generators†
journal, July 1959


Figure of merit ZT of a thermoelectric device defined from materials properties
journal, January 2017

  • Snyder, G. Jeffrey; Snyder, Alemayouh H.
  • Energy & Environmental Science, Vol. 10, Issue 11
  • DOI: 10.1039/C7EE02007D

Complex thermoelectric materials
journal, February 2008

  • Snyder, G. Jeffrey; Toberer, Eric S.
  • Nature Materials, Vol. 7, Issue 2, p. 105-114
  • DOI: 10.1038/nmat2090

Introduction to Thermoelectricity
book, January 2016


Determining conductivity and mobility values of individual components in multiphase composite Cu 1.97 Ag 0.03 Se
journal, October 2014

  • Day, Tristan W.; Zeier, Wolfgang G.; Brown, David R.
  • Applied Physics Letters, Vol. 105, Issue 17
  • DOI: 10.1063/1.4897435

Generalized effective-medium approach to the conductivity of an inhomogeneous material
journal, October 1975


Convergence of electronic bands for high performance bulk thermoelectrics
journal, May 2011

  • Pei, Yanzhong; Shi, Xiaoya; LaLonde, Aaron
  • Nature, Vol. 473, Issue 7345, p. 66-69
  • DOI: 10.1038/nature09996

Nano-micro-porous skutterudites with 100% enhancement in ZT for high performance thermoelectricity
journal, January 2017


Lower limit to the thermal conductivity of disordered crystals
journal, September 1992

  • Cahill, David G.; Watson, S. K.; Pohl, R. O.
  • Physical Review B, Vol. 46, Issue 10, p. 6131-6140
  • DOI: 10.1103/PhysRevB.46.6131

Lattice Dislocations Enhancing Thermoelectric PbTe in Addition to Band Convergence
journal, April 2017


High-performance bulk thermoelectrics with all-scale hierarchical architectures
journal, September 2012

  • Biswas, Kanishka; He, Jiaqing; Blum, Ivan D.
  • Nature, Vol. 489, Issue 7416, p. 414-418
  • DOI: 10.1038/nature11439

New insight into the material parameter B to understand the enhanced thermoelectric performance of Mg 2 Sn 1−x−y Ge x Sb y
journal, January 2016

  • Liu, Weishu; Zhou, Jiawei; Jie, Qing
  • Energy & Environmental Science, Vol. 9, Issue 2
  • DOI: 10.1039/C5EE02600H

Recent Studies of Bismuth Telluride and Its Alloys
journal, October 1961

  • Goldsmid, H. J.
  • Journal of Applied Physics, Vol. 32, Issue 10
  • DOI: 10.1063/1.1777042

Hall Effect and Conductivity in Porous Media
journal, July 1956

  • Juretschke, H. J.; Landauer, R.; Swanson, J. A.
  • Journal of Applied Physics, Vol. 27, Issue 7
  • DOI: 10.1063/1.1722496

Thermoelectric properties of a composite medium
journal, December 1991

  • Bergman, David J.; Levy, Ohad
  • Journal of Applied Physics, Vol. 70, Issue 11
  • DOI: 10.1063/1.349830

A Mesoporous Anisotropic n-Type Bi 2 Te 3 Monolith with Low Thermal Conductivity as an Efficient Thermoelectric Material
journal, July 2012

  • Zhang, Yichi; Day, Tristan; Snedaker, Matthew L.
  • Advanced Materials, Vol. 24, Issue 37
  • DOI: 10.1002/adma.201201974

The Scattering of Low-Frequency Lattice Waves by Static Imperfections
journal, December 1955


Morphological effects on the thermoelectric properties of Ti 0.3 Zr 0.35 Hf 0.35 Ni 1+δ Sn alloys following phase separation
journal, January 2015

  • Appel, Oshrat; Zilber, Tsvika; Kalabukhov, Sergey
  • Journal of Materials Chemistry C, Vol. 3, Issue 44
  • DOI: 10.1039/C5TC03214H

Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics
journal, April 2015


Thermal conductivity, dislocation density and GaN device design
journal, October 2006


New and Old Concepts in Thermoelectric Materials
journal, November 2009

  • Sootsman, Joseph R.; Chung, Duck Young; Kanatzidis, Mercouri G.
  • Angewandte Chemie International Edition, Vol. 48, Issue 46, p. 8616-8639
  • DOI: 10.1002/anie.200900598

Measurement of the electrical resistivity and Hall coefficient at high temperatures
journal, December 2012

  • Borup, Kasper A.; Toberer, Eric S.; Zoltan, Leslie D.
  • Review of Scientific Instruments, Vol. 83, Issue 12
  • DOI: 10.1063/1.4770124

Functional Graded Germanium-Lead Chalcogenide-Based Thermoelectric Module for Renewable Energy Applications
journal, April 2015

  • Hazan, Eden; Ben-Yehuda, Ohad; Madar, Naor
  • Advanced Energy Materials, Vol. 5, Issue 11
  • DOI: 10.1002/aenm.201500272

Engineering the Thermoelectric Transport in Half-Heusler Materials through a Bottom-Up Nanostructure Synthesis
journal, May 2017

  • Zhao, Huaizhou; Cao, Binglei; Li, Shanming
  • Advanced Energy Materials, Vol. 7, Issue 18
  • DOI: 10.1002/aenm.201700446

Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems
journal, September 2008


Application of the compatibility factor to the design of segmented and cascaded thermoelectric generators
journal, March 2004

  • Snyder, G. Jeffrey
  • Applied Physics Letters, Vol. 84, Issue 13
  • DOI: 10.1063/1.1689396

Vacancy-induced dislocations within grains for high-performance PbSe thermoelectrics
journal, January 2017

  • Chen, Zhiwei; Ge, Binghui; Li, Wen
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms13828

High thermoelectric performance in (Bi 0.25 Sb 0.75 ) 2 Te 3 due to band convergence and improved by carrier concentration control
journal, October 2017


Dislocation strain as the mechanism of phonon scattering at grain boundaries
journal, January 2016

  • Kim, Hyun-Sik; Kang, Stephen D.; Tang, Yinglu
  • Materials Horizons, Vol. 3, Issue 3
  • DOI: 10.1039/C5MH00299K

Rapid consolidation of powdered materials by induction hot pressing
journal, February 2011

  • LaLonde, Aaron D.; Ikeda, Teruyuki; Snyder, G. Jeffrey
  • Review of Scientific Instruments, Vol. 82, Issue 2
  • DOI: 10.1063/1.3534080

Rational Design of Advanced Thermoelectric Materials
journal, February 2013

  • Yang, Jihui; Yip, Hin-Lap; Jen, Alex K. -Y.
  • Advanced Energy Materials, Vol. 3, Issue 5
  • DOI: 10.1002/aenm.201200514

Highly efficient bismuth telluride doped p-type Pb0.13Ge0.87Te for thermoelectric applications
journal, November 2007

  • Gelbstein, Yaniv; Dashevsky, Zinovi; Dariel, Moshe P.
  • physica status solidi (RRL) – Rapid Research Letters, Vol. 1, Issue 6
  • DOI: 10.1002/pssr.200701160

Note on the conduction of heat in crystals
journal, June 1938


Effective Medium Theory for the Hall Effect in Disordered Materials
journal, April 1973


Bulk nanostructured thermoelectric materials: current research and future prospects
journal, January 2009

  • Minnich, A. J.; Dresselhaus, M. S.; Ren, Z. F.
  • Energy & Environmental Science, Vol. 2, Issue 5
  • DOI: 10.1039/b822664b

The Criteria for Beneficial Disorder in Thermoelectric Solid Solutions
journal, October 2012

  • Wang, Heng; LaLonde, Aaron D.; Pei, Yanzhong
  • Advanced Functional Materials, Vol. 23, Issue 12
  • DOI: 10.1002/adfm.201201576

Figure of merit for thermoelectrics
journal, February 1989

  • Mahan, G. D.
  • Journal of Applied Physics, Vol. 65, Issue 4
  • DOI: 10.1063/1.342976

High-performance nanostructured thermoelectric materials
journal, October 2010


A high temperature apparatus for measurement of the Seebeck coefficient
journal, June 2011

  • Iwanaga, Shiho; Toberer, Eric S.; LaLonde, Aaron
  • Review of Scientific Instruments, Vol. 82, Issue 6
  • DOI: 10.1063/1.3601358

Structural Evolution Following Spinodal Decomposition of the Pseudoternary Compound (Pb0.3Sn0.1Ge0.6)Te
journal, November 2009

  • Dado, Boaz; Gelbstein, Yaniv; Mogilansky, Dimitri
  • Journal of Electronic Materials, Vol. 39, Issue 9
  • DOI: 10.1007/s11664-009-0980-3

Point Defect Engineering of High-Performance Bismuth-Telluride-Based Thermoelectric Materials
journal, June 2014

  • Hu, Lipeng; Zhu, Tiejun; Liu, Xiaohua
  • Advanced Functional Materials, Vol. 24, Issue 33
  • DOI: 10.1002/adfm.201400474