DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A high-energy and long-cycling lithium–sulfur pouch cell via a macroporous catalytic cathode with double-end binding sites

Abstract

Lithium-sulfur batteries are attractive alternatives to lithium-ion batteries because of their high theoretical specific energy and natural abundance of sulfur. However, the practical specific energy and cycle life of Li-S pouch cells are significantly limited by the use of thin sulfur electrodes/flooded electrolytes and polysulfides shuttle/Li metal degradation, respectively. In this work we propose a cathode design concept to achieve good Li-S pouch cell performances. The cathode is composed of uniformly embedded ZnS nanoparticles and Co-N-C single-atom catalyst to form double-end biding sites inside a highly oriented macroporous host, which can effectively immobilize and catalytically convert polysulfides intermediates during cycling, thus eliminating the shuttle effect and lithium metal corrosion. The ordered macropores enhance ionic transport under high sulfur loading by forming sufficient catalyst/conductive support/electrolyte triple-phase boundaries. This prevents the formation of inactive sulfur (dead sulfur). Our cathode structure shows improved performances in a pouch cell configuration under high sulfur loading and lean electrolyte operation. An Ah-level pouch cell with only 100% lithium excess can deliver a cell specific energy of > 300 Wh kg–1 with a Coulombic efficiency >95% for 80 cycles.

Authors:
 [1]; ORCiD logo [2];  [2];  [3];  [2];  [4];  [3]; ORCiD logo [2];  [2]; ORCiD logo [2]; ORCiD logo [2];  [4];  [4]; ORCiD logo [5]; ORCiD logo [3]
  1. Hong Kong University of Science and Technology (China); Argonne National Lab. (ANL), Lemont, IL (United States)
  2. Argonne National Lab. (ANL), Lemont, IL (United States)
  3. Hong Kong University of Science and Technology (China)
  4. Xiamen University (China)
  5. Argonne National Lab. (ANL), Lemont, IL (United States); Stanford Univ., CA (United States); Imam Abdulrahman Bin Faisal University (IAU), Dammam (Saudi Arabia)
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Transportation Office. Vehicle Technologies Office; USDOE Office of Science (SC); Research Grants Council (RGC); Clean Vehicles, US-China Clean Energy Research Centre
OSTI Identifier:
1775086
Grant/Contract Number:  
AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
Nature Nanotechnology
Additional Journal Information:
Journal Volume: 16; Journal Issue: 2; Journal ID: ISSN 1748-3387
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; Batteries

Citation Formats

Zhao, Chen, Xu, Gui-Liang, Yu, Zhou, Zhang, Leicheng, Hwang, Inhui, Mo, Yu-Xue, Ren, Yuxun, Cheng, Lei, Sun, Cheng-Jun, Ren, Yang, Zuo, Xiaobing, Li, Jun-Tao, Sun, Shi-Gang, Amine, Khalil, and Zhao, Tianshou. A high-energy and long-cycling lithium–sulfur pouch cell via a macroporous catalytic cathode with double-end binding sites. United States: N. p., 2020. Web. doi:10.1038/s41565-020-00797-w.
Zhao, Chen, Xu, Gui-Liang, Yu, Zhou, Zhang, Leicheng, Hwang, Inhui, Mo, Yu-Xue, Ren, Yuxun, Cheng, Lei, Sun, Cheng-Jun, Ren, Yang, Zuo, Xiaobing, Li, Jun-Tao, Sun, Shi-Gang, Amine, Khalil, & Zhao, Tianshou. A high-energy and long-cycling lithium–sulfur pouch cell via a macroporous catalytic cathode with double-end binding sites. United States. https://doi.org/10.1038/s41565-020-00797-w
Zhao, Chen, Xu, Gui-Liang, Yu, Zhou, Zhang, Leicheng, Hwang, Inhui, Mo, Yu-Xue, Ren, Yuxun, Cheng, Lei, Sun, Cheng-Jun, Ren, Yang, Zuo, Xiaobing, Li, Jun-Tao, Sun, Shi-Gang, Amine, Khalil, and Zhao, Tianshou. Mon . "A high-energy and long-cycling lithium–sulfur pouch cell via a macroporous catalytic cathode with double-end binding sites". United States. https://doi.org/10.1038/s41565-020-00797-w. https://www.osti.gov/servlets/purl/1775086.
@article{osti_1775086,
title = {A high-energy and long-cycling lithium–sulfur pouch cell via a macroporous catalytic cathode with double-end binding sites},
author = {Zhao, Chen and Xu, Gui-Liang and Yu, Zhou and Zhang, Leicheng and Hwang, Inhui and Mo, Yu-Xue and Ren, Yuxun and Cheng, Lei and Sun, Cheng-Jun and Ren, Yang and Zuo, Xiaobing and Li, Jun-Tao and Sun, Shi-Gang and Amine, Khalil and Zhao, Tianshou},
abstractNote = {Lithium-sulfur batteries are attractive alternatives to lithium-ion batteries because of their high theoretical specific energy and natural abundance of sulfur. However, the practical specific energy and cycle life of Li-S pouch cells are significantly limited by the use of thin sulfur electrodes/flooded electrolytes and polysulfides shuttle/Li metal degradation, respectively. In this work we propose a cathode design concept to achieve good Li-S pouch cell performances. The cathode is composed of uniformly embedded ZnS nanoparticles and Co-N-C single-atom catalyst to form double-end biding sites inside a highly oriented macroporous host, which can effectively immobilize and catalytically convert polysulfides intermediates during cycling, thus eliminating the shuttle effect and lithium metal corrosion. The ordered macropores enhance ionic transport under high sulfur loading by forming sufficient catalyst/conductive support/electrolyte triple-phase boundaries. This prevents the formation of inactive sulfur (dead sulfur). Our cathode structure shows improved performances in a pouch cell configuration under high sulfur loading and lean electrolyte operation. An Ah-level pouch cell with only 100% lithium excess can deliver a cell specific energy of > 300 Wh kg–1 with a Coulombic efficiency >95% for 80 cycles.},
doi = {10.1038/s41565-020-00797-w},
journal = {Nature Nanotechnology},
number = 2,
volume = 16,
place = {United States},
year = {Mon Nov 23 00:00:00 EST 2020},
month = {Mon Nov 23 00:00:00 EST 2020}
}

Works referenced in this record:

Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

Regulating the Hidden Solvation‐Ion‐Exchange in Concentrated Electrolytes for Stable and Safe Lithium Metal Batteries
journal, June 2020

  • Amine, Rachid; Liu, Jianzhao; Acznik, Ilona
  • Advanced Energy Materials, Vol. 10, Issue 25
  • DOI: 10.1002/aenm.202000901

Pathways for practical high-energy long-cycling lithium metal batteries
journal, February 2019


Electrolyte additive enabled fast charging and stable cycling lithium metal batteries
journal, March 2017


Local structure and photoluminescence properties of nanostructured Zn 1-x Mn x S material: Local structure and photoluminescence properties of nanostructured Zn 1-x Mn x S material
journal, August 2015

  • Curcio, Ana Laura; Bernardi, Maria Inês Basso; Mesquita, Alexandre
  • physica status solidi (c), Vol. 12, Issue 12
  • DOI: 10.1002/pssc.201510135

Identification of single-atom active sites in carbon-based cobalt catalysts during electrocatalytic hydrogen evolution
journal, December 2018


Factors Affecting the Proper Functioning of a 3Ah Li-S Pouch Cell
journal, January 2017

  • Salihoglu, Omer; Demir-Cakan, Rezan
  • Journal of The Electrochemical Society, Vol. 164, Issue 13
  • DOI: 10.1149/2.0271713jes

Understanding the Nature of Absorption/Adsorption in Nanoporous Polysulfide Sorbents for the Li–S Battery
journal, September 2012

  • Evers, Scott; Yim, Taeeun; Nazar, Linda F.
  • The Journal of Physical Chemistry C, Vol. 116, Issue 37
  • DOI: 10.1021/jp304380j

From ultrasoft pseudopotentials to the projector augmented-wave method
journal, January 1999


Theoretical Calculation Guided Design of Single-Atom Catalysts toward Fast Kinetic and Long-Life Li–S Batteries
journal, December 2019


Understanding the Anchoring Effect of Two-Dimensional Layered Materials for Lithium–Sulfur Batteries
journal, May 2015


Intrinsic Shuttle Suppression in Lithium-Sulfur Batteries for Pouch Cell Application
journal, January 2017

  • Weller, Christine; Thieme, Sören; Härtel, Paul
  • Journal of The Electrochemical Society, Vol. 164, Issue 14
  • DOI: 10.1149/2.0981714jes

Sulfur Encapsulated in Graphitic Carbon Nanocages for High-Rate and Long-Cycle Lithium-Sulfur Batteries
journal, September 2016


Rechargeable Lithium–Sulfur Batteries
journal, July 2014

  • Manthiram, Arumugam; Fu, Yongzhu; Chung, Sheng-Heng
  • Chemical Reviews, Vol. 114, Issue 23
  • DOI: 10.1021/cr500062v

Toward Practical High-Energy Batteries: A Modular-Assembled Oval-Like Carbon Microstructure for Thick Sulfur Electrodes
journal, April 2017


Designing high-energy lithium–sulfur batteries
journal, January 2016

  • Seh, Zhi Wei; Sun, Yongming; Zhang, Qianfan
  • Chemical Society Reviews, Vol. 45, Issue 20
  • DOI: 10.1039/C5CS00410A

The gap between long lifespan Li-S coin and pouch cells: The importance of lithium metal anode protection
journal, January 2017


High-energy lithium metal pouch cells with limited anode swelling and long stable cycles
journal, May 2019


Advances in lithium–sulfur batteries based on multifunctional cathodes and electrolytes
journal, September 2016


Lithium phosphorus oxynitride as an efficient protective layer on lithium metal anodes for advanced lithium-sulfur batteries
journal, March 2019


Conductive and Catalytic Triple-Phase Interfaces Enabling Uniform Nucleation in High-Rate Lithium-Sulfur Batteries
journal, October 2018

  • Yuan, Hong; Peng, Hong-Jie; Li, Bo-Quan
  • Advanced Energy Materials, Vol. 9, Issue 1
  • DOI: 10.1002/aenm.201802768

Enhanced Electrochemical Kinetics on Conductive Polar Mediators for Lithium-Sulfur Batteries
journal, October 2016

  • Peng, Hong-Jie; Zhang, Ge; Chen, Xiang
  • Angewandte Chemie International Edition, Vol. 55, Issue 42
  • DOI: 10.1002/anie.201605676

Mechanism and Kinetics of Li 2 S Precipitation in Lithium-Sulfur Batteries
journal, August 2015

  • Fan, Frank Y.; Carter, W. Craig; Chiang, Yet-Ming
  • Advanced Materials, Vol. 27, Issue 35
  • DOI: 10.1002/adma.201501559

Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
journal, July 1996


New Approaches for High Energy Density Lithium–Sulfur Battery Cathodes
journal, June 2012

  • Evers, Scott; Nazar, Linda F.
  • Accounts of Chemical Research, Vol. 46, Issue 5
  • DOI: 10.1021/ar3001348

Design of N-Coordinated Dual-Metal Sites: A Stable and Active Pt-Free Catalyst for Acidic Oxygen Reduction Reaction
journal, November 2017

  • Wang, Jing; Huang, Zhengqing; Liu, Wei
  • Journal of the American Chemical Society, Vol. 139, Issue 48
  • DOI: 10.1021/jacs.7b10385

Cathode porosity is a missing key parameter to optimize lithium-sulfur battery energy density
journal, October 2019


Accurate Bulk Properties from Approximate Many-Body Techniques
journal, July 2009


In-Situ Assembled VS 4 as a Polysulfide Mediator for High-Loading Lithium–Sulfur Batteries
journal, March 2020


Cobalt in Nitrogen-Doped Graphene as Single-Atom Catalyst for High-Sulfur Content Lithium–Sulfur Batteries
journal, February 2019

  • Du, Zhenzhen; Chen, Xingjia; Hu, Wei
  • Journal of the American Chemical Society, Vol. 141, Issue 9
  • DOI: 10.1021/jacs.8b12973

Reviving the lithium metal anode for high-energy batteries
journal, March 2017

  • Lin, Dingchang; Liu, Yayuan; Cui, Yi
  • Nature Nanotechnology, Vol. 12, Issue 3
  • DOI: 10.1038/nnano.2017.16

Reaction heterogeneity in practical high-energy lithium–sulfur pouch cells
journal, January 2020

  • Shi, Lili; Bak, Seong-Min; Shadike, Zulipiya
  • Energy & Environmental Science, Vol. 13, Issue 10
  • DOI: 10.1039/D0EE02088E

Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium
journal, May 1994


Beyond the Polysulfide Shuttle and Lithium Dendrite Formation: Addressing the Sluggish Sulfur Redox Kinetics for Practical High‐Energy Li‐S Batteries
journal, August 2020

  • Zhao, Chen; Xu, Gui‐Liang; Zhao, Tianshou
  • Angewandte Chemie International Edition, Vol. 59, Issue 40
  • DOI: 10.1002/anie.202007159

Ordered macro-microporous metal-organic framework single crystals
journal, January 2018


Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries
journal, July 2018


2D MoS2 as an efficient protective layer for lithium metal anodes in high-performance Li–S batteries
journal, February 2018


A Perspective toward Practical Lithium–Sulfur Batteries
journal, June 2020


Local electronic structure of ZnS and ZnSe doped by Mn, Fe, Co, and Ni from x-ray-absorption near-edge structure studies
journal, January 1996

  • L/awniczak-Jabl/onska, K.; Iwanowski, R. J.; Gol/acki, Z.
  • Physical Review B, Vol. 53, Issue 3
  • DOI: 10.1103/PhysRevB.53.1119

High-performance battery electrodes via magnetic templating
journal, July 2016


Transient existence of crystalline lithium disulfide Li2S2 in a lithium-sulfur battery
journal, September 2016


In Situ Chemical Imaging of Solid-Electrolyte Interphase Layer Evolution in Li–S Batteries
journal, May 2017

  • Nandasiri, Manjula I.; Camacho-Forero, Luis E.; Schwarz, Ashleigh M.
  • Chemistry of Materials, Vol. 29, Issue 11
  • DOI: 10.1021/acs.chemmater.7b00374

A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries
journal, May 2009

  • Ji, Xiulei; Lee, Kyu Tae; Nazar, Linda F.
  • Nature Materials, Vol. 8, Issue 6, p. 500-506
  • DOI: 10.1038/nmat2460

High rate and stable cycling of lithium metal anode
journal, February 2015

  • Qian, Jiangfeng; Henderson, Wesley A.; Xu, Wu
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms7362