DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Flexible and efficient perovskite quantum dot solar cells via hybrid interfacial architecture

Abstract

All-inorganic CsPbI3 perovskite quantum dots have received substantial research interest for photovoltaic applications because of higher efficiency compared to solar cells using other quantum dots materials and the various exciting properties that perovskites have to offer. These quantum dot devices also exhibit good mechanical stability amongst various thin-film photovoltaic technologies. We demonstrate higher mechanical endurance of quantum dot films compared to bulk thin film and highlight the importance of further research on high-performance and flexible optoelectronic devices using nanoscale grains as an advantage. Specifically, we develop a hybrid interfacial architecture consisting of CsPbI3 quantum dot/PCBM heterojunction, enabling an energy cascade for efficient charge transfer and mechanical adhesion. The champion CsPbI3 quantum dot solar cell has an efficiency of 15.1% (stabilized power output of 14.61%), which is among the highest report to date. Building on this strategy, we further demonstrate a highest efficiency of 12.3% in flexible quantum dot photovoltaics.

Authors:
 [1];  [2];  [3]; ORCiD logo [4];  [1]; ORCiD logo [1];  [1];  [1]; ORCiD logo [1];  [1];  [1];  [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [5]; ORCiD logo [6]; ORCiD logo [7];  [1]
  1. Univ. of New South Wales, Sydney, NSW (Australia); Soochow Univ. (China)
  2. Nankai Univ., Tianjin (China); National Renewable Energy Lab. (NREL), Golden, CO (United States)
  3. Macquarie Univ., NSW (Australia)
  4. Univ. of New South Wales, Sydney, NSW (Australia); Univ. of Sydney, NSW (Australia)
  5. Univ. of New South Wales, Sydney, NSW (Australia); Soochow Univ. (China); Univ. of Sydney, NSW (Australia)
  6. National Renewable Energy Lab. (NREL), Golden, CO (United States)
  7. Soochow Univ. (China)
Publication Date:
Research Org.:
National Renewable Energy Lab. (NREL), Golden, CO (United States)
Sponsoring Org.:
U.S. Department of Defense (DOD); USDOE
OSTI Identifier:
1772451
Report Number(s):
NREL-JA-5900-78640
Journal ID: ISSN 2041-1723; MainId:32557;UUID:ba38d979-b073-45ae-854c-2944b4571060;MainAdminID:20096
Grant/Contract Number:  
AC36-08GO28308
Resource Type:
Accepted Manuscript
Journal Name:
Nature Communications
Additional Journal Information:
Journal Volume: 12; Journal Issue: 1; Journal ID: ISSN 2041-1723
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
14 SOLAR ENERGY; flexible; solar cell; perovskite; quantum dot; solar energy

Citation Formats

Hu, Long, Zhao, Qian, Huang, Shujuan, Zheng, Jianghui, Guan, Xinwei, Patterson, Robert, Kim, Jiyun, Shi, Lei, Lin, Chun-Ho, Lei, Qi, Chu, Dewei, Tao, Wan, Cheong, Soshan, Tilley, Richard D., Ho-Baillie, Anita Y., Luther, Joseph M., Yuan, Jianyu, and Wu, Tom. Flexible and efficient perovskite quantum dot solar cells via hybrid interfacial architecture. United States: N. p., 2021. Web. doi:10.1038/s41467-020-20749-1.
Hu, Long, Zhao, Qian, Huang, Shujuan, Zheng, Jianghui, Guan, Xinwei, Patterson, Robert, Kim, Jiyun, Shi, Lei, Lin, Chun-Ho, Lei, Qi, Chu, Dewei, Tao, Wan, Cheong, Soshan, Tilley, Richard D., Ho-Baillie, Anita Y., Luther, Joseph M., Yuan, Jianyu, & Wu, Tom. Flexible and efficient perovskite quantum dot solar cells via hybrid interfacial architecture. United States. https://doi.org/10.1038/s41467-020-20749-1
Hu, Long, Zhao, Qian, Huang, Shujuan, Zheng, Jianghui, Guan, Xinwei, Patterson, Robert, Kim, Jiyun, Shi, Lei, Lin, Chun-Ho, Lei, Qi, Chu, Dewei, Tao, Wan, Cheong, Soshan, Tilley, Richard D., Ho-Baillie, Anita Y., Luther, Joseph M., Yuan, Jianyu, and Wu, Tom. Wed . "Flexible and efficient perovskite quantum dot solar cells via hybrid interfacial architecture". United States. https://doi.org/10.1038/s41467-020-20749-1. https://www.osti.gov/servlets/purl/1772451.
@article{osti_1772451,
title = {Flexible and efficient perovskite quantum dot solar cells via hybrid interfacial architecture},
author = {Hu, Long and Zhao, Qian and Huang, Shujuan and Zheng, Jianghui and Guan, Xinwei and Patterson, Robert and Kim, Jiyun and Shi, Lei and Lin, Chun-Ho and Lei, Qi and Chu, Dewei and Tao, Wan and Cheong, Soshan and Tilley, Richard D. and Ho-Baillie, Anita Y. and Luther, Joseph M. and Yuan, Jianyu and Wu, Tom},
abstractNote = {All-inorganic CsPbI3 perovskite quantum dots have received substantial research interest for photovoltaic applications because of higher efficiency compared to solar cells using other quantum dots materials and the various exciting properties that perovskites have to offer. These quantum dot devices also exhibit good mechanical stability amongst various thin-film photovoltaic technologies. We demonstrate higher mechanical endurance of quantum dot films compared to bulk thin film and highlight the importance of further research on high-performance and flexible optoelectronic devices using nanoscale grains as an advantage. Specifically, we develop a hybrid interfacial architecture consisting of CsPbI3 quantum dot/PCBM heterojunction, enabling an energy cascade for efficient charge transfer and mechanical adhesion. The champion CsPbI3 quantum dot solar cell has an efficiency of 15.1% (stabilized power output of 14.61%), which is among the highest report to date. Building on this strategy, we further demonstrate a highest efficiency of 12.3% in flexible quantum dot photovoltaics.},
doi = {10.1038/s41467-020-20749-1},
journal = {Nature Communications},
number = 1,
volume = 12,
place = {United States},
year = {Wed Jan 20 00:00:00 EST 2021},
month = {Wed Jan 20 00:00:00 EST 2021}
}

Works referenced in this record:

Tuning the Surface-Passivating Ligand Anchoring Position Enables Phase Robustness in CsPbI 3 Perovskite Quantum Dot Solar Cells
journal, September 2020


Metal Halide Perovskites in Quantum Dot Solar Cells: Progress and Prospects
journal, June 2020


Emergence of colloidal quantum-dot light-emitting technologies
journal, December 2012

  • Shirasaki, Yasuhiro; Supran, Geoffrey J.; Bawendi, Moungi G.
  • Nature Photonics, Vol. 7, Issue 1
  • DOI: 10.1038/nphoton.2012.328

Energy level tuned indium arsenide colloidal quantum dot films for efficient photovoltaics
journal, October 2018


A New Passivation Route Leading to Over 8% Efficient PbSe Quantum-Dot Solar Cells via Direct Ion Exchange with Perovskite Nanocrystals
journal, September 2017


A Small‐Molecule “Charge Driver” enables Perovskite Quantum Dot Solar Cells with Efficiency Approaching 13%
journal, July 2019


High Efficiency Mesoscopic Solar Cells Using CsPbI 3 Perovskite Quantum Dots Enabled by Chemical Interface Engineering
journal, January 2020

  • Chen, Keqiang; Jin, Wei; Zhang, Yupeng
  • Journal of the American Chemical Society, Vol. 142, Issue 8
  • DOI: 10.1021/jacs.9b10700

Engineering colloidal quantum dot solids within and beyond the mobility-invariant regime
journal, May 2014

  • Zhitomirsky, David; Voznyy, Oleksandr; Levina, Larissa
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms4803

Reduction of Optical Gain Threshold in CsPbI 3 Nanocrystals Achieved by Generation of Asymmetric Hot-Biexcitons
journal, April 2020


Spray‐Coated Colloidal Perovskite Quantum Dot Films for Highly Efficient Solar Cells
journal, September 2019

  • Yuan, Jifeng; Bi, Chenghao; Wang, Shixun
  • Advanced Functional Materials, Vol. 29, Issue 49
  • DOI: 10.1002/adfm.201906615

Enhanced mobility CsPbI 3 quantum dot arrays for record-efficiency, high-voltage photovoltaic cells
journal, October 2017

  • Sanehira, Erin M.; Marshall, Ashley R.; Christians, Jeffrey A.
  • Science Advances, Vol. 3, Issue 10
  • DOI: 10.1126/sciadv.aao4204

Gas chromatography–mass spectrometry analyses of encapsulated stable perovskite solar cells
journal, May 2020


Hybrid graphene–quantum dot phototransistors with ultrahigh gain
journal, May 2012

  • Konstantatos, Gerasimos; Badioli, Michela; Gaudreau, Louis
  • Nature Nanotechnology, Vol. 7, Issue 6
  • DOI: 10.1038/nnano.2012.60

Graphene Doping Improved Device Performance of ZnMgO/PbS Colloidal Quantum Dot Photovoltaics
journal, February 2016

  • Hu, Long; Li, Deng-Bing; Gao, Liang
  • Advanced Functional Materials, Vol. 26, Issue 12
  • DOI: 10.1002/adfm.201505043

Genome-wide identification of DNA methylation QTLs in whole blood highlights pathways for cardiovascular disease
journal, September 2019


Bilayer PbS Quantum Dots for High-Performance Photodetectors
journal, June 2017


Efficient and stable solution-processed planar perovskite solar cells via contact passivation
journal, February 2017


Guanidinium‐Assisted Surface Matrix Engineering for Highly Efficient Perovskite Quantum Dot Photovoltaics
journal, May 2020

  • Ling, Xufeng; Yuan, Jianyu; Zhang, Xuliang
  • Advanced Materials, Vol. 32, Issue 26
  • DOI: 10.1002/adma.202001906

Charge Transport Modulation of a Flexible Quantum Dot Solar Cell Using a Piezoelectric Effect
journal, September 2017


In Situ Ligand Bonding Management of CsPbI 3 Perovskite Quantum Dots Enables High‐Performance Photovoltaics and Red Light‐Emitting Diodes
journal, September 2020

  • Shi, Junwei; Li, Fangchao; Jin, Yan
  • Angewandte Chemie International Edition, Vol. 59, Issue 49
  • DOI: 10.1002/anie.202010440

14.1% CsPbI 3 Perovskite Quantum Dot Solar Cells via Cesium Cation Passivation
journal, June 2019

  • Ling, Xufeng; Zhou, Sijie; Yuan, Jianyu
  • Advanced Energy Materials, Vol. 9, Issue 28
  • DOI: 10.1002/aenm.201900721

Monolayer Perovskite Bridges Enable Strong Quantum Dot Coupling for Efficient Solar Cells
journal, July 2020


Quantum dot-induced phase stabilization of  -CsPbI3 perovskite for high-efficiency photovoltaics
journal, October 2016


Heterovalent cation substitutional doping for quantum dot homojunction solar cells
journal, December 2013

  • Stavrinadis, Alexandros; Rath, Arup K.; de Arquer, F. Pelayo García
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms3981

Hybrid organic–inorganic inks flatten the energy landscape in colloidal quantum dot solids
journal, November 2016

  • Liu, Mengxia; Voznyy, Oleksandr; Sabatini, Randy
  • Nature Materials, Vol. 16, Issue 2
  • DOI: 10.1038/nmat4800

Colloidal-quantum-dot photovoltaics using atomic-ligand passivation
journal, September 2011

  • Tang, Jiang; Kemp, Kyle W.; Hoogland, Sjoerd
  • Nature Materials, Vol. 10, Issue 10
  • DOI: 10.1038/nmat3118

The Future of Flexible Organic Solar Cells
journal, May 2020

  • Fukuda, Kenjiro; Yu, Kilho; Someya, Takao
  • Advanced Energy Materials, Vol. 10, Issue 25
  • DOI: 10.1002/aenm.202000765

Suppressing Deep Traps in PbS Colloidal Quantum Dots via Facile Iodide Substitutional Doping for Solar Cells with Efficiency >10%
journal, March 2017


Stabilizing halide perovskite surfaces for solar cell operation with wide-bandgap lead oxysalts
journal, August 2019


Highly Efficient Inverted Structural Quantum Dot Solar Cells
journal, January 2018


Spectral and Dynamical Properties of Single Excitons, Biexcitons, and Trions in Cesium–Lead-Halide Perovskite Quantum Dots
journal, March 2016


Perovskite Quantum Dot Photovoltaic Materials beyond the Reach of Thin Films: Full-Range Tuning of A-Site Cation Composition
journal, September 2018


Highly Efficient Flexible Quantum Dot Solar Cells with Improved Electron Extraction Using MgZnO Nanocrystals
journal, August 2017


All-Inorganic Colloidal Quantum Dot Photovoltaics Employing Solution-Phase Halide Passivation
journal, September 2012


Stabilizing the α-Phase of CsPbI3 Perovskite by Sulfobetaine Zwitterions in One-Step Spin-Coating Films
journal, October 2017


Water Vapor Treatment of Low-Temperature Deposited SnO 2 Electron Selective Layers for Efficient Flexible Perovskite Solar Cells
journal, August 2017


Surface passivation engineering strategy to fully-inorganic cubic CsPbI3 perovskites for high-performance solar cells
journal, March 2018


A colloidal quantum dot infrared photodetector and its use for intraband detection
journal, May 2019


Toward Scalable PbS Quantum Dot Solar Cells Using a Tailored Polymeric Hole Conductor
journal, October 2019


Dual Interfacial Engineering Enables Efficient and Reproducible CsPbI 2 Br All-Inorganic Perovskite Solar Cells
journal, June 2020

  • Wang, Yao; Duan, Chenghao; Zhang, Xuliang
  • ACS Applied Materials & Interfaces, Vol. 12, Issue 28
  • DOI: 10.1021/acsami.0c09571

High efficiency perovskite quantum dot solar cells with charge separating heterostructure
journal, June 2019


Efficient carrier multiplication in CsPbI3 perovskite nanocrystals
journal, October 2018


Integrating an electrically active colloidal quantum dot photodiode with a graphene phototransistor
journal, June 2016

  • Nikitskiy, Ivan; Goossens, Stijn; Kufer, Dominik
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms11954

Nucleation and Crystallization Control via Polyurethane to Enhance the Bendability of Perovskite Solar Cells with Excellent Device Performance
journal, September 2017

  • Huang, Zengqi; Hu, Xiaotian; Liu, Cong
  • Advanced Functional Materials, Vol. 27, Issue 41
  • DOI: 10.1002/adfm.201703061

Flexible quantum dot light-emitting diodes for next-generation displays
journal, April 2018


Flexible Perovskite Solar Cells
journal, August 2019


Physically Flexible, Rapid-Response Gas Sensor Based on Colloidal Quantum Dot Solids
journal, January 2014


Mixed-quantum-dot solar cells
journal, November 2017


Perovskite Quantum Dot Solar Cells with 15.6% Efficiency and Improved Stability Enabled by an α-CsPbI 3 /FAPbI 3 Bilayer Structure
journal, October 2019