DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Ultralow Voltage GaN Vacuum Nanodiodes in Air

Abstract

The III-nitride semiconductors have many attractive properties for field-emission vacuum electronics, including high thermal and chemical stability, low electron affinity, and high breakdown fields. In this work, we report top-down fabricated gallium nitride (GaN)-based nanoscale vacuum electron diodes operable in air, with record ultralow turn-on voltages down to ~0.24 V and stable high field-emission currents, tested up to several microamps for single-emitter devices. We leverage a scalable, top-down GaN nanofabrication method leading to damage-free and smooth surfaces. Gap-dependent and pressure-dependent studies provide new insights into the design of future, integrated nanogap vacuum electron devices. The results show promise for a new class of high-performance and robust, on-chip, III-nitride-based vacuum nanoelectronics operable in air or reduced vacuum.

Authors:
ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [2];  [1];  [3];  [3]; ORCiD logo [1]
  1. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
  2. Sandia National Lab. (SNL-CA), Livermore, CA (United States)
  3. Univ. of Florida, Gainesville, FL (United States)
Publication Date:
Research Org.:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sandia National Lab. (SNL-CA), Livermore, CA (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA); USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1769924
Report Number(s):
SAND-2021-2006J
Journal ID: ISSN 1530-6984; 694031
Grant/Contract Number:  
AC04-94AL85000; NA-0003525
Resource Type:
Accepted Manuscript
Journal Name:
Nano Letters
Additional Journal Information:
Journal Volume: 21; Journal Issue: 5; Journal ID: ISSN 1530-6984
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
77 NANOSCIENCE AND NANOTECHNOLOGY; field emission; vacuum electron; nanogap; GaN; field enhancement

Citation Formats

Sapkota, Keshab R., Leonard, François, Talin, A. Alec, Gunning, Brendan P., Kazanowska, Barbara A., Jones, Kevin S., and Wang, George T. Ultralow Voltage GaN Vacuum Nanodiodes in Air. United States: N. p., 2021. Web. doi:10.1021/acs.nanolett.0c03959.
Sapkota, Keshab R., Leonard, François, Talin, A. Alec, Gunning, Brendan P., Kazanowska, Barbara A., Jones, Kevin S., & Wang, George T. Ultralow Voltage GaN Vacuum Nanodiodes in Air. United States. https://doi.org/10.1021/acs.nanolett.0c03959
Sapkota, Keshab R., Leonard, François, Talin, A. Alec, Gunning, Brendan P., Kazanowska, Barbara A., Jones, Kevin S., and Wang, George T. Tue . "Ultralow Voltage GaN Vacuum Nanodiodes in Air". United States. https://doi.org/10.1021/acs.nanolett.0c03959. https://www.osti.gov/servlets/purl/1769924.
@article{osti_1769924,
title = {Ultralow Voltage GaN Vacuum Nanodiodes in Air},
author = {Sapkota, Keshab R. and Leonard, François and Talin, A. Alec and Gunning, Brendan P. and Kazanowska, Barbara A. and Jones, Kevin S. and Wang, George T.},
abstractNote = {The III-nitride semiconductors have many attractive properties for field-emission vacuum electronics, including high thermal and chemical stability, low electron affinity, and high breakdown fields. In this work, we report top-down fabricated gallium nitride (GaN)-based nanoscale vacuum electron diodes operable in air, with record ultralow turn-on voltages down to ~0.24 V and stable high field-emission currents, tested up to several microamps for single-emitter devices. We leverage a scalable, top-down GaN nanofabrication method leading to damage-free and smooth surfaces. Gap-dependent and pressure-dependent studies provide new insights into the design of future, integrated nanogap vacuum electron devices. The results show promise for a new class of high-performance and robust, on-chip, III-nitride-based vacuum nanoelectronics operable in air or reduced vacuum.},
doi = {10.1021/acs.nanolett.0c03959},
journal = {Nano Letters},
number = 5,
volume = 21,
place = {United States},
year = {Tue Feb 23 00:00:00 EST 2021},
month = {Tue Feb 23 00:00:00 EST 2021}
}

Works referenced in this record:

Electron field emission from nanostructured surfaces of GaN and AlGaN
journal, February 2008

  • Evtukh, A.; Yilmazoglu, O.; Litovchenko, V.
  • physica status solidi (c), Vol. 5, Issue 2
  • DOI: 10.1002/pssc.200777450

Field emission from GaN and (Al,Ga)N∕GaN nanorod heterostructures
journal, January 2007

  • Deb, Parijat; Westover, Tyler; Kim, Hogyoung
  • Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, Vol. 25, Issue 3
  • DOI: 10.1116/1.2732735

Field emission from a single carbon nanofiber at sub 100nm gap
journal, July 2008

  • Sim, H. S.; Lau, S. P.; Ang, L. K.
  • Applied Physics Letters, Vol. 93, Issue 2
  • DOI: 10.1063/1.2959826

Analysis of electron emission degradation in silicon field emitter arrays
journal, March 1998

  • Song, Yoon-Ho
  • Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, Vol. 16, Issue 2
  • DOI: 10.1116/1.589912

Metal–oxide–semiconductor field-effect transistor with a vacuum channel
journal, July 2012

  • Srisonphan, Siwapon; Jung, Yun Suk; Kim, Hong Koo
  • Nature Nanotechnology, Vol. 7, Issue 8
  • DOI: 10.1038/nnano.2012.107

Field Emission of Individual Carbon Nanotubes in the Scanning Electron Microscope
journal, October 2002


Ultrawide-Bandgap Semiconductors: Research Opportunities and Challenges
journal, December 2017

  • Tsao, J. Y.; Chowdhury, S.; Hollis, M. A.
  • Advanced Electronic Materials, Vol. 4, Issue 1
  • DOI: 10.1002/aelm.201600501

SiC emitters for nanoscale vacuum electronics: A systematic study of cathode–anode gap by focused ion beam etching
journal, May 2017

  • Liu, Meng; Li, Tie; Wang, Yuelin
  • Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, Vol. 35, Issue 3
  • DOI: 10.1116/1.4979049

In situ visualization of degradation of silicon field emitter tips
journal, January 2007

  • Nozawa, Naoyuki; Kakushima, Kuniyuki; Hashiguchi, Gen
  • IEEJ Transactions on Electrical and Electronic Engineering, Vol. 2, Issue 3
  • DOI: 10.1002/tee.20143

Fabrication and characteristics of lateral type GaN field-emission arrays using metalorganic chemical vapor deposition
journal, January 2003

  • Lee, Jae-Hoon; Lee, Myoung-Bok; Hahm, Sung-Ho
  • Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, Vol. 21, Issue 4
  • DOI: 10.1116/1.1575759

Optical performance of top-down fabricated InGaN/GaN nanorod light emitting diode arrays
journal, January 2011

  • Li, Qiming; Westlake, Karl R.; Crawford, Mary H.
  • Optics Express, Vol. 19, Issue 25
  • DOI: 10.1364/OE.19.025528

Electron Emission in Intense Electric Fields
journal, May 1928

  • Fowler, R. H.; Nordheim, L.
  • Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 119, Issue 781
  • DOI: 10.1098/rspa.1928.0091

Trapping phenomena and degradation mechanisms in GaN-based power HEMTs
journal, May 2018

  • Meneghini, Matteo; Tajalli, Alaleh; Moens, Peter
  • Materials Science in Semiconductor Processing, Vol. 78
  • DOI: 10.1016/j.mssp.2017.10.009

GaN field emitter array diode with integrated anode
journal, March 1998

  • Underwood, Robert D.
  • Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, Vol. 16, Issue 2
  • DOI: 10.1116/1.589914

Practical nanoscale field emission devices for integrated circuits
journal, June 2017

  • Jones, William M.; Lukin, Daniil; Scherer, Axel
  • Applied Physics Letters, Vol. 110, Issue 26
  • DOI: 10.1063/1.4989677

Metal–Air Transistors: Semiconductor-Free Field-Emission Air-Channel Nanoelectronics
journal, November 2018


Experimental study of field emission from ultrasharp silicon, diamond, GaN, and tungsten tips in close proximity to the counter electrode
journal, November 2018

  • Lenk, Claudia; Lenk, Steve; Holz, Mathias
  • Journal of Vacuum Science & Technology B, Vol. 36, Issue 6
  • DOI: 10.1116/1.5048518

Vacuum electronics at the dawn of the twenty-first century
journal, May 1999

  • Granatstein, V. L.; Parker, R. K.; Armstrong, C. M.
  • Proceedings of the IEEE, Vol. 87, Issue 5
  • DOI: 10.1109/5.757251

Wet etching of GaN, AlN, and SiC: a review
journal, January 2005


Cofabrication of Vacuum Field Emission Transistor (VFET) and MOSFET
journal, May 2014


Field-emission properties of individual GaN nanowires grown by chemical vapor deposition
journal, February 2012

  • Choi, Yongho; Michan, Mario; Johnson, Jason L.
  • Journal of Applied Physics, Vol. 111, Issue 4
  • DOI: 10.1063/1.3685903

Nanoscale vacuum channel transistors fabricated on silicon carbide wafers
journal, August 2019


Geometrical enhancement of field emission of individual nanotubes studied by in situ transmission electron microscopy
journal, March 2006

  • Xu, Zhi; Bai, X. D.; Wang, E. G.
  • Applied Physics Letters, Vol. 88, Issue 13
  • DOI: 10.1063/1.2188389

Analytic evaluation of field emission enhancement factors for ellipsoidal cones and elliptic cross-section wedges
journal, June 1991

  • Kosmahl, H. G.
  • IEEE Transactions on Electron Devices, Vol. 38, Issue 6
  • DOI: 10.1109/16.81650

The Effect of Gas Adsorption on the Field Emission Mechanism of Carbon Nanotubes
journal, August 2002

  • Kim, Changwook; Choi, Yong Soo; Lee, Seung Mi
  • Journal of the American Chemical Society, Vol. 124, Issue 33
  • DOI: 10.1021/ja026538h

Recent progress in field emitter array development for high performance applications
journal, January 1999


Microrods and microlines by three-dimensional epitaxially grown GaN for field emission cathodes
conference, July 2017

  • Lawrowski, Robert; Langer, Christoph; Prommesberger, Christian
  • 2017 30th International Vacuum Nanoelectronics Conference (IVNC)
  • DOI: 10.1109/IVNC.2017.8051576

Review—Ionizing Radiation Damage Effects on GaN Devices
journal, November 2015

  • Pearton, S. J.; Ren, F.; Patrick, Erin
  • ECS Journal of Solid State Science and Technology, Vol. 5, Issue 2
  • DOI: 10.1149/2.0251602jss

Can we reliably estimate the emission field and field enhancement factor of carbon nanotube film field emitters?
journal, March 2002


Electron affinity of AlxGa1−xN(0001) surfaces
journal, April 2001

  • Grabowski, S. P.; Schneider, M.; Nienhaus, H.
  • Applied Physics Letters, Vol. 78, Issue 17
  • DOI: 10.1063/1.1367275

Degradation and failure of carbon nanotube field emitters
journal, March 2003


Vacuum nanoelectronics: Back to the future?—Gate insulated nanoscale vacuum channel transistor
journal, May 2012

  • Han, Jin-Woo; Sub Oh, Jae; Meyyappan, M.
  • Applied Physics Letters, Vol. 100, Issue 21
  • DOI: 10.1063/1.4717751

Excellent field emission properties of VO 2 (A) nanogap emitters in air
journal, February 2018

  • Liu, Meng; Fu, Wenbiao; Yang, Yang
  • Applied Physics Letters, Vol. 112, Issue 9
  • DOI: 10.1063/1.4996370

Structure and electrical characteristics of silicon field emission microelectronic devices
journal, January 1991

  • Hunt, C. E.; Trujillo, J. T.; Orvis, W. J.
  • IEEE Transactions on Electron Devices, Vol. 38, Issue 10
  • DOI: 10.1109/16.88515

An Al 0.25 Ga 0.75 N/GaN Lateral Field Emission Device with a Nano Void Channel
journal, March 2018


Nanoscale Vacuum Channel Transistor
journal, March 2017


Surface chemistry and electronic structure of nonpolar and polar GaN films
journal, August 2015


Work function of refractory metals and its dependence upon working conditions
journal, May 1999


Vacuum microelectronics-1992
journal, June 1992


Physical Observation of a Thermo-Morphic Transition in a Silicon Nanowire
journal, February 2012

  • Choi, Sung-Jin; Moon, Dong-Il; Duarte, Juan P.
  • ACS Nano, Vol. 6, Issue 3
  • DOI: 10.1021/nn2046295