DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: High Current Cycling in a Superconcentrated Ionic Liquid Electrolyte to Promote Uniform Li Morphology and a Uniform LiF-Rich Solid Electrolyte Interphase

Abstract

High-energy-density systems with fast charging rates and suppressed dendrite growth are critical for the implementation of efficient and safe next-generation advanced battery technologies such as those based on Li metal. However, there are few studies that investigate reliable cycling of Li metal electrodes under high-rate conditions. in this work, by employing a superconcentrated ionic liquid (IL) electrolyte, we highlight the effect of Li salt concentration and applied current density on the resulting Li deposit morphology and solid electrolyte interphase (SEI) characteristics, demonstrating exceptional deposition/dissolution rates and efficiency in these systems. Operation at higher current densities enhanced the cycling efficiency, e.g., from 64 ± 3% at 1 mA cm–2 up to 96 ± 1% at 20 mA cm–2 (overpotential <±0.2 V), while resulting in lower electrode resistance and dendrite-free Li morphology. A maximum current density of 50 mA cm–2 resulted in 88 ± 3% cycling efficiency, displaying tolerance for high overpotentials at the Ni working electrode (0.5 V). X-ray photoelectron microscopy (XPS), time-of-flight secondary-ion mass spectroscopy (ToF-SIMS), and scanning electron microscopy (SEM) surface measurements revealed that the formation of a stable SEI, rich in LiF and deficient in organic carbon species, coupled with nondendritic and compact Li morphologies enabled enhanced cyclingmore » efficiency at higher currents. Reduced dendrite formation at high current is further highlighted by the use of a highly porous separator in coin cell cycling (1 mAh cm–2 at 50 °C), sustaining 500 cycles at 10 mA cm–2.« less

Authors:
ORCiD logo [1];  [2]; ORCiD logo [2];  [1]; ORCiD logo [2];  [2];  [1]; ORCiD logo [1]
  1. Deakin Univ., Melbourne, VIC (Australia)
  2. National Renewable Energy Lab. (NREL), Golden, CO (United States)
Publication Date:
Research Org.:
National Renewable Energy Lab. (NREL), Golden, CO (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Transportation Office. Vehicle Technologies Office; Australian Research Council (ARC)
OSTI Identifier:
1665837
Report Number(s):
NREL/JA-5K00-77342
Journal ID: ISSN 1944-8244; MainId:26288;UUID:6235ead2-13a4-467a-805f-05520f9f6078;MainAdminID:17447
Grant/Contract Number:  
AC36-08GO28308
Resource Type:
Accepted Manuscript
Journal Name:
ACS Applied Materials and Interfaces
Additional Journal Information:
Journal Volume: 12; Journal Issue: 37; Journal ID: ISSN 1944-8244
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; batteries; high current; high efficiency; ionic liquid; LiF; SEI; silicon; superconcentrated

Citation Formats

Periyapperuma, Kalani, Arca, Elisabetta, Harvey, Steven, Pathirana, Thushan, Ban, Chunmei, Burrell, Anthony, Pozo-Gonzalo, Cristina, and Howlett, Patrick C. High Current Cycling in a Superconcentrated Ionic Liquid Electrolyte to Promote Uniform Li Morphology and a Uniform LiF-Rich Solid Electrolyte Interphase. United States: N. p., 2020. Web. doi:10.1021/acsami.0c09074.
Periyapperuma, Kalani, Arca, Elisabetta, Harvey, Steven, Pathirana, Thushan, Ban, Chunmei, Burrell, Anthony, Pozo-Gonzalo, Cristina, & Howlett, Patrick C. High Current Cycling in a Superconcentrated Ionic Liquid Electrolyte to Promote Uniform Li Morphology and a Uniform LiF-Rich Solid Electrolyte Interphase. United States. https://doi.org/10.1021/acsami.0c09074
Periyapperuma, Kalani, Arca, Elisabetta, Harvey, Steven, Pathirana, Thushan, Ban, Chunmei, Burrell, Anthony, Pozo-Gonzalo, Cristina, and Howlett, Patrick C. Wed . "High Current Cycling in a Superconcentrated Ionic Liquid Electrolyte to Promote Uniform Li Morphology and a Uniform LiF-Rich Solid Electrolyte Interphase". United States. https://doi.org/10.1021/acsami.0c09074. https://www.osti.gov/servlets/purl/1665837.
@article{osti_1665837,
title = {High Current Cycling in a Superconcentrated Ionic Liquid Electrolyte to Promote Uniform Li Morphology and a Uniform LiF-Rich Solid Electrolyte Interphase},
author = {Periyapperuma, Kalani and Arca, Elisabetta and Harvey, Steven and Pathirana, Thushan and Ban, Chunmei and Burrell, Anthony and Pozo-Gonzalo, Cristina and Howlett, Patrick C.},
abstractNote = {High-energy-density systems with fast charging rates and suppressed dendrite growth are critical for the implementation of efficient and safe next-generation advanced battery technologies such as those based on Li metal. However, there are few studies that investigate reliable cycling of Li metal electrodes under high-rate conditions. in this work, by employing a superconcentrated ionic liquid (IL) electrolyte, we highlight the effect of Li salt concentration and applied current density on the resulting Li deposit morphology and solid electrolyte interphase (SEI) characteristics, demonstrating exceptional deposition/dissolution rates and efficiency in these systems. Operation at higher current densities enhanced the cycling efficiency, e.g., from 64 ± 3% at 1 mA cm–2 up to 96 ± 1% at 20 mA cm–2 (overpotential <±0.2 V), while resulting in lower electrode resistance and dendrite-free Li morphology. A maximum current density of 50 mA cm–2 resulted in 88 ± 3% cycling efficiency, displaying tolerance for high overpotentials at the Ni working electrode (0.5 V). X-ray photoelectron microscopy (XPS), time-of-flight secondary-ion mass spectroscopy (ToF-SIMS), and scanning electron microscopy (SEM) surface measurements revealed that the formation of a stable SEI, rich in LiF and deficient in organic carbon species, coupled with nondendritic and compact Li morphologies enabled enhanced cycling efficiency at higher currents. Reduced dendrite formation at high current is further highlighted by the use of a highly porous separator in coin cell cycling (1 mAh cm–2 at 50 °C), sustaining 500 cycles at 10 mA cm–2.},
doi = {10.1021/acsami.0c09074},
journal = {ACS Applied Materials and Interfaces},
number = 37,
volume = 12,
place = {United States},
year = {Wed Sep 02 00:00:00 EDT 2020},
month = {Wed Sep 02 00:00:00 EDT 2020}
}

Works referenced in this record:

Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review
journal, July 2017


Issues and challenges facing rechargeable lithium batteries
journal, November 2001

  • Tarascon, J.-M.; Armand, M.
  • Nature, Vol. 414, Issue 6861, p. 359-367
  • DOI: 10.1038/35104644

Lithium batteries: a 50-year perspective, 1959–2009
journal, October 2000


α-CuV 2 O 6 Nanowires: Hydrothermal Synthesis and Primary Lithium Battery Application
journal, April 2008

  • Ma, Hua; Zhang, Shaoyan; Ji, Weiqiang
  • Journal of the American Chemical Society, Vol. 130, Issue 15
  • DOI: 10.1021/ja800109u

A review of hazards associated with primary lithium and lithium-ion batteries
journal, November 2011


Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with lithiophilic coating
journal, February 2016

  • Liang, Zheng; Lin, Dingchang; Zhao, Jie
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 11
  • DOI: 10.1073/pnas.1518188113

3D Porous Cu Current Collector/Li-Metal Composite Anode for Stable Lithium-Metal Batteries
journal, March 2017

  • Li, Qi; Zhu, Shoupu; Lu, Yingying
  • Advanced Functional Materials, Vol. 27, Issue 18
  • DOI: 10.1002/adfm.201606422

Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes
journal, August 2015

  • Yang, Chun-Peng; Yin, Ya-Xia; Zhang, Shuai-Feng
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms9058

Ionic Liquid Electrolytes for Li–Air Batteries: Lithium Metal Cycling
journal, May 2014

  • Grande, Lorenzo; Paillard, Elie; Kim, Guk-Tae
  • International Journal of Molecular Sciences, Vol. 15, Issue 5
  • DOI: 10.3390/ijms15058122

Accurate Determination of Coulombic Efficiency for Lithium Metal Anodes and Lithium Metal Batteries
journal, October 2017

  • Adams, Brian D.; Zheng, Jianming; Ren, Xiaodi
  • Advanced Energy Materials, Vol. 8, Issue 7
  • DOI: 10.1002/aenm.201702097

A reversible dendrite-free high-areal-capacity lithium metal electrode
journal, April 2017

  • Wang, Hui; Matsui, Masaki; Kuwata, Hiroko
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms15106

An Artificial Solid Electrolyte Interphase with High Li-Ion Conductivity, Mechanical Strength, and Flexibility for Stable Lithium Metal Anodes
journal, December 2016

  • Liu, Yayuan; Lin, Dingchang; Yuen, Pak Yan
  • Advanced Materials, Vol. 29, Issue 10
  • DOI: 10.1002/adma.201605531

Columnar Lithium Metal Anodes
journal, September 2017


Synergistic Effect of 3D Current Collectors and ALD Surface Modification for High Coulombic Efficiency Lithium Metal Anodes
journal, December 2018

  • Chen, Kuan-Hung; Sanchez, Adrian J.; Kazyak, Eric
  • Advanced Energy Materials, Vol. 9, Issue 4
  • DOI: 10.1002/aenm.201802534

Utmost limits of various solid electrolytes in all-solid-state lithium batteries: A critical review
journal, July 2019


Reviving the lithium metal anode for high-energy batteries
journal, March 2017

  • Lin, Dingchang; Liu, Yayuan; Cui, Yi
  • Nature Nanotechnology, Vol. 12, Issue 3
  • DOI: 10.1038/nnano.2017.16

Review—Superconcentrated Electrolytes for Lithium Batteries
journal, January 2015

  • Yamada, Yuki; Yamada, Atsuo
  • Journal of The Electrochemical Society, Vol. 162, Issue 14
  • DOI: 10.1149/2.0041514jes

Energy applications of ionic liquids
journal, January 2014

  • MacFarlane, Douglas R.; Tachikawa, Naoki; Forsyth, Maria
  • Energy Environ. Sci., Vol. 7, Issue 1
  • DOI: 10.1039/C3EE42099J

Application of the N-propyl-N-methyl-pyrrolidinium Bis(fluorosulfonyl)imide RTIL Containing Lithium Bis(fluorosulfonyl)imide in Ionic Liquid Based Lithium Batteries
journal, January 2010

  • Bhatt, Anand I.; Best, Adam S.; Huang, Junhua
  • Journal of The Electrochemical Society, Vol. 157, Issue 1
  • DOI: 10.1149/1.3257978

Prospects of applying ionic liquids and deep eutectic solvents for renewable energy storage by means of redox flow batteries
journal, February 2014

  • Chakrabarti, Mohammed Harun; Mjalli, Farouq Sabri; AlNashef, Inas Muen
  • Renewable and Sustainable Energy Reviews, Vol. 30
  • DOI: 10.1016/j.rser.2013.10.004

Physical properties of high Li-ion content N-propyl-N-methylpyrrolidinium bis(fluorosulfonyl)imide based ionic liquid electrolytes
journal, January 2015

  • Yoon, Hyungook; Best, Adam S.; Forsyth, Maria
  • Physical Chemistry Chemical Physics, Vol. 17, Issue 6
  • DOI: 10.1039/C4CP05333H

Why Bis(fluorosulfonyl)imide Is a “Magic Anion” for Electrochemistry
journal, August 2014

  • Shkrob, Ilya A.; Marin, Timothy W.; Zhu, Ye
  • The Journal of Physical Chemistry C, Vol. 118, Issue 34
  • DOI: 10.1021/jp506567p

Fast Charge/Discharge of Li Metal Batteries Using an Ionic Liquid Electrolyte
journal, January 2013

  • Yoon, H.; Howlett, P. C.; Best, A. S.
  • Journal of The Electrochemical Society, Vol. 160, Issue 10
  • DOI: 10.1149/2.022310jes

Toward Practical Li Metal Batteries: Importance of Separator Compatibility Using Ionic Liquid Electrolytes
journal, August 2019

  • Eftekharnia, Mojtaba; Hasanpoor, Meisam; Forsyth, Maria
  • ACS Applied Energy Materials, Vol. 2, Issue 9
  • DOI: 10.1021/acsaem.9b01175

Role of Li Concentration and the SEI Layer in Enabling High Performance Li Metal Electrodes Using a Phosphonium Bis(fluorosulfonyl)imide Ionic Liquid
journal, September 2017

  • Girard, Gaetan M. A.; Hilder, Matthias; Nucciarone, Donato
  • The Journal of Physical Chemistry C, Vol. 121, Issue 39
  • DOI: 10.1021/acs.jpcc.7b01929

Structure of ionic liquids under external electric field: a molecular dynamics simulation
journal, March 2012


Engineering high-energy-density sodium battery anodes for improved cycling with superconcentrated ionic-liquid electrolytes
journal, May 2020


A new asymmetric Pseudo-Voigt function for more efficient fitting of XPS lines: New asymmetric Pseudo-Voigt function for efficient XPS line fitting
journal, June 2014

  • Schmid, Martin; Steinrück, Hans-Peter; Gottfried, J. Michael
  • Surface and Interface Analysis, Vol. 46, Issue 8
  • DOI: 10.1002/sia.5521

High Lithium Metal Cycling Efficiency in a Room-Temperature Ionic Liquid
journal, January 2004

  • Howlett, Patrick C.; MacFarlane, Douglas R.; Hollenkamp, Anthony F.
  • Electrochemical and Solid-State Letters, Vol. 7, Issue 5
  • DOI: 10.1149/1.1664051

(Invited) Long-Term Cyclability of Lithium Metal Electrodes in Ionic Liquid-Based Electrolytes at Room Temperature
conference, January 2010

  • Kim, Guk-Tae; Appetecchi, Giovanni B.; Montanino, Maria
  • 216th ECS Meeting, ECS Transactions
  • DOI: 10.1149/1.3393847

The Correlation Between Surface Chemistry, Surface Morphology, and Cycling Efficiency of Lithium Electrodes in a Few Polar Aprotic Systems
journal, January 1989

  • Aurbach, Doron
  • Journal of The Electrochemical Society, Vol. 136, Issue 11
  • DOI: 10.1149/1.2096425

Status of the secondary lithium electrode
journal, January 1981


Some problems of the cycleability of lithium electrodes
journal, May 1989


Effect of Current Density on Morphology of Lithium Electrodeposited in Ionic Liquid-Based Electrolytes
journal, January 2014

  • Sano, Hikaru; Sakaebe, Hikari; Senoh, Hiroshi
  • Journal of The Electrochemical Society, Vol. 161, Issue 9
  • DOI: 10.1149/2.0331409jes

Nanoscale Nucleation and Growth of Electrodeposited Lithium Metal
journal, January 2017


Dead lithium: mass transport effects on voltage, capacity, and failure of lithium metal anodes
journal, January 2017

  • Chen, Kuan-Hung; Wood, Kevin N.; Kazyak, Eric
  • Journal of Materials Chemistry A, Vol. 5, Issue 23
  • DOI: 10.1039/C7TA00371D

Study of the Initial Stage of Solid Electrolyte Interphase Formation upon Chemical Reaction of Lithium Metal and N -Methyl- N -Propyl-Pyrrolidinium-Bis(Fluorosulfonyl)Imide
journal, September 2012

  • Budi, Akin; Basile, Andrew; Opletal, George
  • The Journal of Physical Chemistry C, Vol. 116, Issue 37
  • DOI: 10.1021/jp304581g

A comparative AFM study of the interfacial nanostructure in imidazolium or pyrrolidinium ionic liquid electrolytes for zinc electrochemical systems
journal, January 2016

  • Begić, Srđan; Li, Hua; Atkin, Rob
  • Physical Chemistry Chemical Physics, Vol. 18, Issue 42
  • DOI: 10.1039/C6CP04299F

Dendrite-Free Lithium Deposition with Self-Aligned Columnar Structure in a Carbonate–Ether Mixed Electrolyte
journal, May 2017


Stabilizing lithium metal using ionic liquids for long-lived batteries
journal, June 2016

  • Basile, A.; Bhatt, A. I.; O’Mullane, A. P.
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms11794

Spectroscopic Characterization of the SEI Layer Formed on Lithium Metal Electrodes in Phosphonium Bis(fluorosulfonyl)imide Ionic Liquid Electrolytes
journal, February 2018

  • Girard, Gaetan M. A.; Hilder, Matthias; Dupre, Nicolas
  • ACS Applied Materials & Interfaces, Vol. 10, Issue 7
  • DOI: 10.1021/acsami.7b18183

Characterization of the Lithium Surface in N-Methyl-N-alkylpyrrolidinium Bis(trifluoromethanesulfonyl)amide Room-Temperature Ionic Liquid Electrolytes
journal, January 2006

  • Howlett, P. C.; Brack, N.; Hollenkamp, A. F.
  • Journal of The Electrochemical Society, Vol. 153, Issue 3
  • DOI: 10.1149/1.2164726

Characterization of Lithium Electrode in Lithium Imides/Ethylene Carbonate and Cyclic Ether Electrolytes
journal, January 2004

  • Ota, Hitoshi; Sakata, Yuuichi; Wang, Xianming
  • Journal of The Electrochemical Society, Vol. 151, Issue 3
  • DOI: 10.1149/1.1644137

Influence of the lithium salt nature over the surface film formation on a graphite electrode in Li-ion batteries: An XPS study
journal, March 2007


Improving high-capacity Li1.2Ni0.15Mn0.55Co0.1O2-based lithium-ion cells by modifiying the positive electrode with alumina
journal, July 2013


Conformal Lithium Fluoride Protection Layer on Three-Dimensional Lithium by Nonhazardous Gaseous Reagent Freon
journal, May 2017


Fluoroethylene Carbonate Additives to Render Uniform Li Deposits in Lithium Metal Batteries
journal, January 2017

  • Zhang, Xue-Qiang; Cheng, Xin-Bing; Chen, Xiang
  • Advanced Functional Materials, Vol. 27, Issue 10
  • DOI: 10.1002/adfm.201605989

Nanoscale Imaging of Fundamental Li Battery Chemistry: Solid-Electrolyte Interphase Formation and Preferential Growth of Lithium Metal Nanoclusters
journal, February 2015

  • Sacci, Robert L.; Black, Jennifer M.; Balke, Nina
  • Nano Letters, Vol. 15, Issue 3
  • DOI: 10.1021/nl5048626

Structure and Nanostructure in Ionic Liquids
journal, June 2015

  • Hayes, Robert; Warr, Gregory G.; Atkin, Rob
  • Chemical Reviews, Vol. 115, Issue 13
  • DOI: 10.1021/cr500411q

Structure and dynamics of the interfacial layer between ionic liquids and electrode materials
journal, April 2014


Composite nonwoven separator for lithium-ion battery: Development and characterization
journal, July 2010


Development of microporous PE films to improve lithium ion batteries
journal, April 2010

  • Yoneda, Haruyuki; Nishimura, Yoshifumi; Doi, Yoshinao
  • Polymer Journal, Vol. 42, Issue 6
  • DOI: 10.1038/pj.2010.25