DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Rational Design of a Ni3N0.85 Electrocatalyst to Accelerate Polysulfide Conversion in Lithium–Sulfur Batteries

Abstract

Slow kinetics of polysulfide conversion reactions lead to severe issues for lithium–sulfur (Li–S) batteries, for example, low rate capability, polysulfide migration, and low Coulombic efficiencies. These challenges hinder the practical applications of Li–S batteries. Here, we proposed a rational strategy of tuning the d-band of catalysts to accelerate the conversion of polysulfides. Nitrogen vacancies were engineered in hexagonal Ni3N (space group P6322) to tune its d-band center, leading to the strong interaction between polysulfides and Ni3N. Because of the greater electron population in the lowest occupied molecular orbital of Li2S4, the terminal S–S bonds were weakened for breaking. Temperature-dependent experiments confirm that Ni3N0.85 demonstrates a much low activation energy, thereby accelerating the conversion of polysulfides. A Li–S cell using Ni3N0.85 can deliver a high initial discharge capacity of 1445.9 mAh g–1 (at 0.02 C) and low decay per cycle (0.039%). The Ni3N0.85 cell can also demonstrate an initial capacity of 1200.4 mAh g–1 for up to 100 cycles at a high loading of 5.2 mg cm–2. The high efficiency of rationally designed Ni3N0.85 demonstrates the effectiveness of the d-band tuning strategy to develop low-activation-energy catalysts and to promote the atomic understanding of polysulfide conversion in Li–S batteries.

Authors:
 [1];  [1];  [2];  [2];  [1];  [1];  [1]; ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [1]
  1. Nanjing Univ. (China)
  2. Argonne National Lab. (ANL), Lemont, IL (United States)
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
National Natural Science Foundation of China (NSFC); National Key Research and Development Program of China; USDOE Office of Energy Efficiency and Renewable Energy (EERE), Transportation Office. Vehicle Technologies Office; USDOE Office of Science (SC)
OSTI Identifier:
1660426
Grant/Contract Number:  
AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
ACS Nano
Additional Journal Information:
Journal Volume: 14; Journal Issue: 6; Journal ID: ISSN 1936-0851
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; Ni3N0.85; electrocatalyst; lithium-sulfur batteries; nanocubes; polysulfide conversion

Citation Formats

Shen, Zihan, Zhang, Zili, Li, Matthew, Yuan, Yifei, Zhao, Yue, Zhang, Shuo, Zhong, Chenglin, Zhu, Jia, Lu, Jun, and Zhang, Huigang. Rational Design of a Ni3N0.85 Electrocatalyst to Accelerate Polysulfide Conversion in Lithium–Sulfur Batteries. United States: N. p., 2020. Web. doi:10.1021/acsnano.9b09371.
Shen, Zihan, Zhang, Zili, Li, Matthew, Yuan, Yifei, Zhao, Yue, Zhang, Shuo, Zhong, Chenglin, Zhu, Jia, Lu, Jun, & Zhang, Huigang. Rational Design of a Ni3N0.85 Electrocatalyst to Accelerate Polysulfide Conversion in Lithium–Sulfur Batteries. United States. https://doi.org/10.1021/acsnano.9b09371
Shen, Zihan, Zhang, Zili, Li, Matthew, Yuan, Yifei, Zhao, Yue, Zhang, Shuo, Zhong, Chenglin, Zhu, Jia, Lu, Jun, and Zhang, Huigang. Thu . "Rational Design of a Ni3N0.85 Electrocatalyst to Accelerate Polysulfide Conversion in Lithium–Sulfur Batteries". United States. https://doi.org/10.1021/acsnano.9b09371. https://www.osti.gov/servlets/purl/1660426.
@article{osti_1660426,
title = {Rational Design of a Ni3N0.85 Electrocatalyst to Accelerate Polysulfide Conversion in Lithium–Sulfur Batteries},
author = {Shen, Zihan and Zhang, Zili and Li, Matthew and Yuan, Yifei and Zhao, Yue and Zhang, Shuo and Zhong, Chenglin and Zhu, Jia and Lu, Jun and Zhang, Huigang},
abstractNote = {Slow kinetics of polysulfide conversion reactions lead to severe issues for lithium–sulfur (Li–S) batteries, for example, low rate capability, polysulfide migration, and low Coulombic efficiencies. These challenges hinder the practical applications of Li–S batteries. Here, we proposed a rational strategy of tuning the d-band of catalysts to accelerate the conversion of polysulfides. Nitrogen vacancies were engineered in hexagonal Ni3N (space group P6322) to tune its d-band center, leading to the strong interaction between polysulfides and Ni3N. Because of the greater electron population in the lowest occupied molecular orbital of Li2S4, the terminal S–S bonds were weakened for breaking. Temperature-dependent experiments confirm that Ni3N0.85 demonstrates a much low activation energy, thereby accelerating the conversion of polysulfides. A Li–S cell using Ni3N0.85 can deliver a high initial discharge capacity of 1445.9 mAh g–1 (at 0.02 C) and low decay per cycle (0.039%). The Ni3N0.85 cell can also demonstrate an initial capacity of 1200.4 mAh g–1 for up to 100 cycles at a high loading of 5.2 mg cm–2. The high efficiency of rationally designed Ni3N0.85 demonstrates the effectiveness of the d-band tuning strategy to develop low-activation-energy catalysts and to promote the atomic understanding of polysulfide conversion in Li–S batteries.},
doi = {10.1021/acsnano.9b09371},
journal = {ACS Nano},
number = 6,
volume = 14,
place = {United States},
year = {Thu May 28 00:00:00 EDT 2020},
month = {Thu May 28 00:00:00 EDT 2020}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 143 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

A Sulfur-Limonene-Based Electrode for Lithium-Sulfur Batteries: High-Performance by Self-Protection
journal, February 2018

  • Wu, Feixiang; Chen, Shuangqiang; Srot, Vesna
  • Advanced Materials, Vol. 30, Issue 13
  • DOI: 10.1002/adma.201706643

Biomimetic Bipolar Microcapsules Derived from Staphylococcus aureus for Enhanced Properties of Lithium-Sulfur Battery Cathodes
journal, January 2018


Current Status and Future Prospects of Metal–Sulfur Batteries
journal, May 2019


Interlayer Material Selection for Lithium-Sulfur Batteries
journal, February 2019


Deciphering the Reaction Mechanism of Lithium–Sulfur Batteries by In Situ/Operando Synchrotron‐Based Characterization Techniques
journal, March 2019

  • Yan, Yingying; Cheng, Chen; Zhang, Liang
  • Advanced Energy Materials, Vol. 9, Issue 18
  • DOI: 10.1002/aenm.201900148

Triple-Layered Carbon-SiO 2 Composite Membrane for High Energy Density and Long Cycling Li–S Batteries
journal, April 2019


Implanting Niobium Carbide into Trichoderma Spore Carbon: a New Advanced Host for Sulfur Cathodes
journal, February 2019


Multifunctional Co 3 S 4 @sulfur nanotubes for enhanced lithium-sulfur battery performance
journal, July 2017


In Situ Formation of Copper-Based Hosts Embedded within 3D N-Doped Hierarchically Porous Carbon Networks for Ultralong Cycle Lithium-Sulfur Batteries
journal, August 2018

  • Yu, Qiuhong; Lu, Yang; Luo, Rongjie
  • Advanced Functional Materials, Vol. 28, Issue 39
  • DOI: 10.1002/adfm.201804520

Demanding energy from carbon
journal, September 2019


Capture and Catalytic Conversion of Polysulfides by In Situ Built TiO 2 ‐MXene Heterostructures for Lithium–Sulfur Batteries
journal, March 2019

  • Jiao, Long; Zhang, Chen; Geng, Chuannan
  • Advanced Energy Materials, Vol. 9, Issue 19
  • DOI: 10.1002/aenm.201900219

Heterogeneous/Homogeneous Mediators for High-Energy-Density Lithium-Sulfur Batteries: Progress and Prospects
journal, June 2018

  • Zhang, Ze-Wen; Peng, Hong-Jie; Zhao, Meng
  • Advanced Functional Materials, Vol. 28, Issue 38
  • DOI: 10.1002/adfm.201707536

Electrocatalysis of Lithium Polysulfides: Current Collectors as Electrodes in Li/S Battery Configuration
journal, March 2015

  • Babu, Ganguli; Ababtain, Khalid; Ng, K. Y. Simon
  • Scientific Reports, Vol. 5, Issue 1
  • DOI: 10.1038/srep08763

Sulfur Nanodots Electrodeposited on Ni Foam as High-Performance Cathode for Li–S Batteries
journal, December 2014

  • Zhao, Qing; Hu, Xiaofei; Zhang, Kai
  • Nano Letters, Vol. 15, Issue 1
  • DOI: 10.1021/nl504263m

Enhancing Catalytic Activity of Titanium Oxide in Lithium–Sulfur Batteries by Band Engineering
journal, May 2019

  • Wang, Yuankun; Zhang, Ruifang; Chen, Jie
  • Advanced Energy Materials, Vol. 9, Issue 24
  • DOI: 10.1002/aenm.201900953

Conductive CoOOH as Carbon‐Free Sulfur Immobilizer to Fabricate Sulfur‐Based Composite for Lithium–Sulfur Battery
journal, April 2019

  • Wang, Zhen‐Yu; Wang, Lu; Liu, Sheng
  • Advanced Functional Materials, Vol. 29, Issue 23
  • DOI: 10.1002/adfm.201901051

ZnS coating of cathode facilitates lean‐electrolyte Li‐S batteries
journal, October 2019

  • Shin, Woochul; Lu, Jun; Ji, Xiulei
  • Carbon Energy, Vol. 1, Issue 2
  • DOI: 10.1002/cey2.10

Self‐Supported and Flexible Sulfur Cathode Enabled via Synergistic Confinement for High‐Energy‐Density Lithium–Sulfur Batteries
journal, June 2019


Long-Life Lithium-Sulfur Batteries with a Bifunctional Cathode Substrate Configured with Boron Carbide Nanowires
journal, August 2018

  • Luo, Liu; Chung, Sheng-Heng; Yaghoobnejad Asl, Hooman
  • Advanced Materials, Vol. 30, Issue 39
  • DOI: 10.1002/adma.201804149

Activating Inert Metallic Compounds for High‐Rate Lithium–Sulfur Batteries Through In Situ Etching of Extrinsic Metal
journal, March 2019

  • Zhao, Meng; Peng, Hong‐Jie; Zhang, Ze‐Wen
  • Angewandte Chemie International Edition, Vol. 58, Issue 12
  • DOI: 10.1002/anie.201812062

Confining Sulfur in Integrated Composite Scaffold with Highly Porous Carbon Fibers/Vanadium Nitride Arrays for High-Performance Lithium-Sulfur Batteries
journal, January 2018

  • Zhong, Yu; Chao, Dongliang; Deng, Shengjue
  • Advanced Functional Materials, Vol. 28, Issue 38
  • DOI: 10.1002/adfm.201706391

Deciphering the Modulation Essence of p Bands in Co-Based Compounds on Li-S Chemistry
journal, December 2018


Expediting redox kinetics of sulfur species by atomic‐scale electrocatalysts in lithium–sulfur batteries
journal, October 2019

  • Li, Bo‐Quan; Kong, Long; Zhao, Chang‐Xin
  • InfoMat, Vol. 1, Issue 4
  • DOI: 10.1002/inf2.12056

Efficient Ni 2 Co 4 P 3 Nanowires Catalysts Enhance Ultrahigh‐Loading Lithium–Sulfur Conversion in a Microreactor‐Like Battery
journal, October 2019

  • Shen, Zihan; Cao, Mengqiu; Zhang, Zili
  • Advanced Functional Materials, Vol. 30, Issue 3
  • DOI: 10.1002/adfm.201906661

In‐situ structural characterizations of electrochemical intercalation of graphite compounds
journal, October 2019


Theoretical surface science and catalysis—calculations and concepts
book, January 2000


Mechanism and Kinetics of Li 2 S Precipitation in Lithium-Sulfur Batteries
journal, August 2015

  • Fan, Frank Y.; Carter, W. Craig; Chiang, Yet-Ming
  • Advanced Materials, Vol. 27, Issue 35
  • DOI: 10.1002/adma.201501559

A Review of Functional Binders in Lithium-Sulfur Batteries
journal, October 2018

  • Yuan, Hong; Huang, Jia-Qi; Peng, Hong-Jie
  • Advanced Energy Materials, Vol. 8, Issue 31
  • DOI: 10.1002/aenm.201802107

Metallic Nickel Nitride Nanosheets Realizing Enhanced Electrochemical Water Oxidation
journal, March 2015

  • Xu, Kun; Chen, Pengzuo; Li, Xiuling
  • Journal of the American Chemical Society, Vol. 137, Issue 12
  • DOI: 10.1021/ja5119495

Irradiation induced effects on Ni3N/Si bilayer system
journal, August 2009


Electrochemical Reactivity Mechanism of Ni[sub 3]N with Lithium
journal, January 2004

  • Wang, Ying; Fu, Zheng-Wen; Yue, Xiao-Li
  • Journal of The Electrochemical Society, Vol. 151, Issue 4
  • DOI: 10.1149/1.1649983

Unconventional Nickel Nitride Enriched with Nitrogen Vacancies as a High-Efficiency Electrocatalyst for Hydrogen Evolution
journal, June 2018


Anion vacancy-mediated ferromagnetism in atomic-thick Ni 3 N nanosheets
journal, December 2017

  • Xia, Baorui; Wang, Tongtong; Chi, Xiao
  • Applied Physics Letters, Vol. 111, Issue 23
  • DOI: 10.1063/1.5016326

Tuning Transition Metal Oxide-Sulfur Interactions for Long Life Lithium Sulfur Batteries: The “Goldilocks” Principle
journal, December 2015

  • Liang, Xiao; Kwok, Chun Yuen; Lodi-Marzano, Fernanda
  • Advanced Energy Materials, Vol. 6, Issue 6
  • DOI: 10.1002/aenm.201501636

Natural Vermiculite Enables High‐Performance in Lithium–Sulfur Batteries via Electrical Double Layer Effects
journal, May 2019


Modelling Coupled Ion Motion in Electrolyte Solutions for Lithium‐Sulfur Batteries
journal, February 2019

  • Osella, Silvio; Minoia, Andrea; Quarti, Claudio
  • Batteries & Supercaps, Vol. 2, Issue 5
  • DOI: 10.1002/batt.201800150

Polar Ultrathin Self-Doping Carbon Nitride Nanosheets with Intrinsic Polysulfide Adsorption for High Performance Lithium-Sulfur Batteries
journal, August 2018


Plasma-Assisted Synthesis of NiCoP for Efficient Overall Water Splitting
journal, November 2016


First principles methods using CASTEP
journal, January 2005

  • Clark, Stewart J.; Segall, Matthew D.; Pickard, Chris J.
  • Zeitschrift für Kristallographie - Crystalline Materials, Vol. 220, Issue 5/6
  • DOI: 10.1524/zkri.220.5.567.65075

Semiempirical GGA-type density functional constructed with a long-range dispersion correction
journal, January 2006

  • Grimme, Stefan
  • Journal of Computational Chemistry, Vol. 27, Issue 15, p. 1787-1799
  • DOI: 10.1002/jcc.20495

Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

Crystal Orbital Hamilton Population (COHP) Analysis As Projected from Plane-Wave Basis Sets
journal, June 2011

  • Deringer, Volker L.; Tchougréeff, Andrei L.; Dronskowski, Richard
  • The Journal of Physical Chemistry A, Vol. 115, Issue 21
  • DOI: 10.1021/jp202489s

Crystal orbital Hamilton populations (COHP): energy-resolved visualization of chemical bonding in solids based on density-functional calculations
journal, August 1993

  • Dronskowski, Richard; Bloechl, Peter E.
  • The Journal of Physical Chemistry, Vol. 97, Issue 33
  • DOI: 10.1021/j100135a014

Analytic projection from plane-wave and PAW wavefunctions and application to chemical-bonding analysis in solids
journal, September 2013

  • Maintz, Stefan; Deringer, Volker L.; Tchougréeff, Andrei L.
  • Journal of Computational Chemistry, Vol. 34, Issue 29
  • DOI: 10.1002/jcc.23424

LOBSTER: A tool to extract chemical bonding from plane-wave based DFT: Tool to Extract Chemical Bonding
journal, February 2016

  • Maintz, Stefan; Deringer, Volker L.; Tchougréeff, Andrei L.
  • Journal of Computational Chemistry, Vol. 37, Issue 11
  • DOI: 10.1002/jcc.24300

An updated version of wannier90: A tool for obtaining maximally-localised Wannier functions
journal, August 2014

  • Mostofi, Arash A.; Yates, Jonathan R.; Pizzi, Giovanni
  • Computer Physics Communications, Vol. 185, Issue 8
  • DOI: 10.1016/j.cpc.2014.05.003