DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Electrokinetic Phenomena Enhanced Lithium-Ion Transport in Leaky Film for Stable Lithium Metal Anodes

Abstract

The application of lithium (Li) metal anodes in Li metal batteries has been hindered by growth of Li dendrite which leads to short cycling life. Here a Li-ion-affinity leaky film as a protection layer is reported to promote a dendrite-free Li metal anode. The leaky film induces electrokinetic phenomena to enhance Li-ion transport, leading to a reduced Li-ion concentration polarization and homogenous Li-ion distribution. As a result, the dendrite-free Li metal anode during Li plating/stripping is demonstrated even at an extremely high deposition capacity (6 mA h cm-2) and current density (40 mA cm-2) with improved Coulombic efficiencies. A full-cell battery with the leaky-film protected Li metal as anode and high-areal-capacity LiNi0.8Co0.1Mn0.1O2 (NCM-811) (~4.2 mA h cm-2) or LiFePO4 (~3.8 mA h cm-2) as cathode shows improved cycling stability and capacity retention, even at lean electrolyte conditions.

Authors:
ORCiD logo [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1]; ORCiD logo [1]
  1. Pennsylvania State Univ., University Park, PA (United States)
Publication Date:
Research Org.:
Pennsylvania State Univ., University Park, PA (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Transportation Office. Vehicle Technologies Office
OSTI Identifier:
1657241
Alternate Identifier(s):
OSTI ID: 1510093
Grant/Contract Number:  
EE0007795; EE0007803
Resource Type:
Accepted Manuscript
Journal Name:
Advanced Energy Materials
Additional Journal Information:
Journal Volume: 9; Journal Issue: 22; Journal ID: ISSN 1614-6832
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 25 ENERGY STORAGE; lithium metal anodes; batteries; electrokinetic phenomena; lithium-ion transport; leaky film

Citation Formats

Li, Guoxing, Liu, Zhe, Wang, Daiwei, He, Xin, Liu, Shuai, Gao, Yue, AlZahrani, Atif, Kim, Seong H., Chen, Long‐Qing, and Wang, Donghai. Electrokinetic Phenomena Enhanced Lithium-Ion Transport in Leaky Film for Stable Lithium Metal Anodes. United States: N. p., 2019. Web. doi:10.1002/aenm.201900704.
Li, Guoxing, Liu, Zhe, Wang, Daiwei, He, Xin, Liu, Shuai, Gao, Yue, AlZahrani, Atif, Kim, Seong H., Chen, Long‐Qing, & Wang, Donghai. Electrokinetic Phenomena Enhanced Lithium-Ion Transport in Leaky Film for Stable Lithium Metal Anodes. United States. https://doi.org/10.1002/aenm.201900704
Li, Guoxing, Liu, Zhe, Wang, Daiwei, He, Xin, Liu, Shuai, Gao, Yue, AlZahrani, Atif, Kim, Seong H., Chen, Long‐Qing, and Wang, Donghai. Mon . "Electrokinetic Phenomena Enhanced Lithium-Ion Transport in Leaky Film for Stable Lithium Metal Anodes". United States. https://doi.org/10.1002/aenm.201900704. https://www.osti.gov/servlets/purl/1657241.
@article{osti_1657241,
title = {Electrokinetic Phenomena Enhanced Lithium-Ion Transport in Leaky Film for Stable Lithium Metal Anodes},
author = {Li, Guoxing and Liu, Zhe and Wang, Daiwei and He, Xin and Liu, Shuai and Gao, Yue and AlZahrani, Atif and Kim, Seong H. and Chen, Long‐Qing and Wang, Donghai},
abstractNote = {The application of lithium (Li) metal anodes in Li metal batteries has been hindered by growth of Li dendrite which leads to short cycling life. Here a Li-ion-affinity leaky film as a protection layer is reported to promote a dendrite-free Li metal anode. The leaky film induces electrokinetic phenomena to enhance Li-ion transport, leading to a reduced Li-ion concentration polarization and homogenous Li-ion distribution. As a result, the dendrite-free Li metal anode during Li plating/stripping is demonstrated even at an extremely high deposition capacity (6 mA h cm-2) and current density (40 mA cm-2) with improved Coulombic efficiencies. A full-cell battery with the leaky-film protected Li metal as anode and high-areal-capacity LiNi0.8Co0.1Mn0.1O2 (NCM-811) (~4.2 mA h cm-2) or LiFePO4 (~3.8 mA h cm-2) as cathode shows improved cycling stability and capacity retention, even at lean electrolyte conditions.},
doi = {10.1002/aenm.201900704},
journal = {Advanced Energy Materials},
number = 22,
volume = 9,
place = {United States},
year = {Mon Apr 29 00:00:00 EDT 2019},
month = {Mon Apr 29 00:00:00 EDT 2019}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 81 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

An Artificial Solid Electrolyte Interphase with High Li-Ion Conductivity, Mechanical Strength, and Flexibility for Stable Lithium Metal Anodes
journal, December 2016

  • Liu, Yayuan; Lin, Dingchang; Yuen, Pak Yan
  • Advanced Materials, Vol. 29, Issue 10
  • DOI: 10.1002/adma.201605531

Metallic anodes for next generation secondary batteries
journal, January 2013

  • Kim, Hansu; Jeong, Goojin; Kim, Young-Ugk
  • Chemical Society Reviews, Vol. 42, Issue 23
  • DOI: 10.1039/c3cs60177c

Lithium metal anodes for rechargeable batteries
journal, January 2014

  • Xu, Wu; Wang, Jiulin; Ding, Fei
  • Energy Environ. Sci., Vol. 7, Issue 2
  • DOI: 10.1039/C3EE40795K

Electrical Energy Storage and Intercalation Chemistry
journal, June 1976


The Li-Ion Rechargeable Battery: A Perspective
journal, January 2013

  • Goodenough, John B.; Park, Kyu-Sung
  • Journal of the American Chemical Society, Vol. 135, Issue 4
  • DOI: 10.1021/ja3091438

Fractal growth of copper electrodeposits
journal, May 1984


Experimental Verification of Overlimiting Current by Surface Conduction and Electro-Osmotic Flow in Microchannels
journal, March 2015


Regulation of ramified electrochemical growth by a diffusive wave
journal, August 1995


III. On the concentration at the electrodes in a solution, with special reference to the liberation of hydrogen by electrolysis of a mixture of copper sulphate and sulphuric acid
journal, January 1901

  • Sand, Henry J. S.
  • The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, Vol. 1, Issue 1
  • DOI: 10.1080/14786440109462590

Solute diffusion model for equiaxed dendritic growth
journal, July 1987


An electro-diffusion model for computing membrane potentials and ionic concentrations in branching dendrites, spines and axons
journal, November 1989

  • Qian, Ning; Sejnowski, T. J.
  • Biological Cybernetics, Vol. 62, Issue 1
  • DOI: 10.1007/BF00217656

Self-Formed Hybrid Interphase Layer on Lithium Metal for High-Performance Lithium–Sulfur Batteries
journal, January 2018


Electrolyte additive enabled fast charging and stable cycling lithium metal batteries
journal, March 2017


The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth
journal, June 2015

  • Li, Weiyang; Yao, Hongbin; Yan, Kai
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms8436

Dendrite-Free Lithium Deposition via Self-Healing Electrostatic Shield Mechanism
journal, March 2013

  • Ding, Fei; Xu, Wu; Graff, Gordon L.
  • Journal of the American Chemical Society, Vol. 135, Issue 11, p. 4450-4456
  • DOI: 10.1021/ja312241y

Stable lithium electrodeposition in liquid and nanoporous solid electrolytes
journal, August 2014

  • Lu, Yingying; Tu, Zhengyuan; Archer, Lynden A.
  • Nature Materials, Vol. 13, Issue 10
  • DOI: 10.1038/nmat4041

Poly(dimethylsiloxane) Thin Film as a Stable Interfacial Layer for High-Performance Lithium-Metal Battery Anodes
journal, October 2016


Interconnected hollow carbon nanospheres for stable lithium metal anodes
journal, July 2014

  • Zheng, Guangyuan; Lee, Seok Woo; Liang, Zheng
  • Nature Nanotechnology, Vol. 9, Issue 8
  • DOI: 10.1038/nnano.2014.152

A facile surface chemistry route to a stabilized lithium metal anode
journal, July 2017


Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes
journal, March 2016

  • Lin, Dingchang; Liu, Yayuan; Liang, Zheng
  • Nature Nanotechnology, Vol. 11, Issue 7
  • DOI: 10.1038/nnano.2016.32

Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode
journal, March 2016

  • Liu, Yayuan; Lin, Dingchang; Liang, Zheng
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms10992

Chemical Dealloying Derived 3D Porous Current Collector for Li Metal Anodes
journal, May 2016


Graphitized Carbon Fibers as Multifunctional 3D Current Collectors for High Areal Capacity Li Anodes
journal, June 2017

  • Zuo, Tong-Tong; Wu, Xiong-Wei; Yang, Chun-Peng
  • Advanced Materials, Vol. 29, Issue 29
  • DOI: 10.1002/adma.201700389

Stable Li Plating/Stripping Electrochemistry Realized by a Hybrid Li Reservoir in Spherical Carbon Granules with 3D Conducting Skeletons
journal, April 2017

  • Ye, Huan; Xin, Sen; Yin, Ya-Xia
  • Journal of the American Chemical Society, Vol. 139, Issue 16
  • DOI: 10.1021/jacs.7b01763

Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes
journal, August 2015

  • Yang, Chun-Peng; Yin, Ya-Xia; Zhang, Shuai-Feng
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms9058

Stable metal battery anodes enabled by polyethylenimine sponge hosts by way of electrokinetic effects
journal, November 2018


Dendrite-Free Lithium Deposition Induced by Uniformly Distributed Lithium Ions for Efficient Lithium Metal Batteries
journal, February 2016

  • Cheng, Xin-Bing; Hou, Ting-Zheng; Zhang, Rui
  • Advanced Materials, Vol. 28, Issue 15
  • DOI: 10.1002/adma.201506124

Reshaping Lithium Plating/Stripping Behavior via Bifunctional Polymer Electrolyte for Room-Temperature Solid Li Metal Batteries
journal, December 2016

  • Zeng, Xian-Xiang; Yin, Ya-Xia; Li, Nian-Wu
  • Journal of the American Chemical Society, Vol. 138, Issue 49
  • DOI: 10.1021/jacs.6b10088

Nonlinear dynamics of ion concentration polarization in porous media: The leaky membrane model
journal, August 2013

  • Dydek, E. Victoria; Bazant, Martin Z.
  • AIChE Journal, Vol. 59, Issue 9
  • DOI: 10.1002/aic.14200

Direct Observation of a Nonequilibrium Electro-Osmotic Instability
journal, December 2008


An In Vivo Formed Solid Electrolyte Surface Layer Enables Stable Plating of Li Metal
journal, December 2017


Polymer–inorganic solid–electrolyte interphase for stable lithium metal batteries under lean electrolyte conditions
journal, March 2019


Stable Lithium Electrodeposition in Liquid and Nanoporous Solid Electrolytes
text, January 2014


Works referencing / citing this record:

In Situ Preparation of Thin and Rigid COF Film on Li Anode as Artificial Solid Electrolyte Interphase Layer Resisting Li Dendrite Puncture
journal, December 2019

  • Chen, Dongdong; Huang, Sheng; Zhong, Lei
  • Advanced Functional Materials, Vol. 30, Issue 7
  • DOI: 10.1002/adfm.201907717

Copper Nitride Nanowires Printed Li with Stable Cycling for Li Metal Batteries in Carbonate Electrolytes
journal, November 2019


MXene‐Based Dendrite‐Free Potassium Metal Batteries
journal, November 2019


Lithiophilic montmorillonite serves as lithium ion reservoir to facilitate uniform lithium deposition
journal, October 2019


Lithiophilic montmorillonite serves as lithium ion reservoir to facilitate uniform lithium deposition
journal, October 2019