DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Topological chiral crystals with helicoid-arc quantum states

Abstract

The quantum behaviour of electrons in materials is the foundation of modern electronics and information technology, and quantum materials with topological electronic and optical properties are essential for realizing quantized electronic responses that can be used for next generation technology. Here we report the first observation of topological quantum properties of chiral crystals in the RhSi family. We find that this material class hosts a quantum phase of matter that exhibits nearly ideal topological surface properties originating from the crystals’ structural chirality. Electrons on the surface of these crystals show a highly unusual helicoid fermionic structure that spirals around two high-symmetry momenta, indicating electronic topological chirality. The existence of bulk multiply degenerate band fermions is guaranteed by the crystal symmetries; however, to determine the topological invariant or charge in these chiral crystals, it is essential to identify and study the helicoid topology of the arc states. The helicoid arcs that we observe on the surface characterize the topological charges of ±2, which arise from bulk higher-spin chiral fermions. These topological conductors exhibit giant Fermi arcs of maximum length (π), which are orders of magnitude larger than those found in known chiral Weyl fermion semimetals. Here, our results demonstrate an electronicmore » topological state of matter on structurally chiral crystals featuring helicoid-arc quantum states. Such exotic multifold chiral fermion semimetal states could be used to detect a quantized photogalvanic optical response, the chiral magnetic effect and other optoelectronic phenomena predicted for this class of materials.« less

Authors:
 [1];  [1];  [1];  [2];  [1];  [1];  [3];  [4];  [4];  [5];  [6];  [1];  [1];  [1];  [2];  [2];  [7];  [4];  [1];  [8] more »;  [5];  [9] « less
  1. Princeton Univ., NJ (United States). Laboratory for Topological Quantum Matter and Advanced Spectroscopy (B7)
  2. Peking Univ., Beijing (China). International Center for Quantum Materials
  3. Louisiana State Univ., Baton Rouge, LA (United States)
  4. Max Planck Institute for Chemical Physics of Solids, Dresden (Germany)
  5. Academia Sinica, Taipei (Taiwan). Institute of Physics
  6. Princeton Univ., NJ (United States). Laboratory for Topological Quantum Matter and Advanced Spectroscopy (B7); Rigetti Quantum Computing, Berkeley, CA (United States)
  7. National Cheng Kung University, Tainan (Taiwan)
  8. Peking Univ., Beijing (China). International Center for Quantum Materials; Collaborative Innovation Center of Quantum Matter, Beijing (China); University of the Chinese Academy of Science, Beijing (China). CAS Center for Excellence in Topological Quantum Computation
  9. Princeton Univ., NJ (United States). Laboratory for Topological Quantum Matter and Advanced Spectroscopy (B7); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Publication Date:
Research Org.:
Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); National Natural Science Foundation of China (NSFC); National Key Research and Development Program of China; Chinese Academy of Science; Academia Sinica, Taiwan; Ministry of Science and Technology (MOST) in Taiwan; National Cheng Kung University, Taiwan; National Center for Theoretical Sciences (NCTS), Taiwan
OSTI Identifier:
1632127
Grant/Contract Number:  
AC02-05CH11231; FG02-05ER46200; XDPB08-1; 291472
Resource Type:
Accepted Manuscript
Journal Name:
Nature (London)
Additional Journal Information:
Journal Name: Nature (London); Journal Volume: 567; Journal Issue: 7749; Journal ID: ISSN 0028-0836
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS

Citation Formats

Sanchez, Daniel S., Belopolski, Ilya, Cochran, Tyler A., Xu, Xitong, Yin, Jia-Xin, Chang, Guoqing, Xie, Weiwei, Manna, Kaustuv, Süß, Vicky, Huang, Cheng-Yi, Alidoust, Nasser, Multer, Daniel, Zhang, Songtian S., Shumiya, Nana, Wang, Xirui, Wang, Guang-Qiang, Chang, Tay-Rong, Felser, Claudia, Xu, Su-Yang, Jia, Shuang, Lin, Hsin, and Hasan, M. Zahid. Topological chiral crystals with helicoid-arc quantum states. United States: N. p., 2019. Web. doi:10.1038/s41586-019-1037-2.
Sanchez, Daniel S., Belopolski, Ilya, Cochran, Tyler A., Xu, Xitong, Yin, Jia-Xin, Chang, Guoqing, Xie, Weiwei, Manna, Kaustuv, Süß, Vicky, Huang, Cheng-Yi, Alidoust, Nasser, Multer, Daniel, Zhang, Songtian S., Shumiya, Nana, Wang, Xirui, Wang, Guang-Qiang, Chang, Tay-Rong, Felser, Claudia, Xu, Su-Yang, Jia, Shuang, Lin, Hsin, & Hasan, M. Zahid. Topological chiral crystals with helicoid-arc quantum states. United States. https://doi.org/10.1038/s41586-019-1037-2
Sanchez, Daniel S., Belopolski, Ilya, Cochran, Tyler A., Xu, Xitong, Yin, Jia-Xin, Chang, Guoqing, Xie, Weiwei, Manna, Kaustuv, Süß, Vicky, Huang, Cheng-Yi, Alidoust, Nasser, Multer, Daniel, Zhang, Songtian S., Shumiya, Nana, Wang, Xirui, Wang, Guang-Qiang, Chang, Tay-Rong, Felser, Claudia, Xu, Su-Yang, Jia, Shuang, Lin, Hsin, and Hasan, M. Zahid. Wed . "Topological chiral crystals with helicoid-arc quantum states". United States. https://doi.org/10.1038/s41586-019-1037-2. https://www.osti.gov/servlets/purl/1632127.
@article{osti_1632127,
title = {Topological chiral crystals with helicoid-arc quantum states},
author = {Sanchez, Daniel S. and Belopolski, Ilya and Cochran, Tyler A. and Xu, Xitong and Yin, Jia-Xin and Chang, Guoqing and Xie, Weiwei and Manna, Kaustuv and Süß, Vicky and Huang, Cheng-Yi and Alidoust, Nasser and Multer, Daniel and Zhang, Songtian S. and Shumiya, Nana and Wang, Xirui and Wang, Guang-Qiang and Chang, Tay-Rong and Felser, Claudia and Xu, Su-Yang and Jia, Shuang and Lin, Hsin and Hasan, M. Zahid},
abstractNote = {The quantum behaviour of electrons in materials is the foundation of modern electronics and information technology, and quantum materials with topological electronic and optical properties are essential for realizing quantized electronic responses that can be used for next generation technology. Here we report the first observation of topological quantum properties of chiral crystals in the RhSi family. We find that this material class hosts a quantum phase of matter that exhibits nearly ideal topological surface properties originating from the crystals’ structural chirality. Electrons on the surface of these crystals show a highly unusual helicoid fermionic structure that spirals around two high-symmetry momenta, indicating electronic topological chirality. The existence of bulk multiply degenerate band fermions is guaranteed by the crystal symmetries; however, to determine the topological invariant or charge in these chiral crystals, it is essential to identify and study the helicoid topology of the arc states. The helicoid arcs that we observe on the surface characterize the topological charges of ±2, which arise from bulk higher-spin chiral fermions. These topological conductors exhibit giant Fermi arcs of maximum length (π), which are orders of magnitude larger than those found in known chiral Weyl fermion semimetals. Here, our results demonstrate an electronic topological state of matter on structurally chiral crystals featuring helicoid-arc quantum states. Such exotic multifold chiral fermion semimetal states could be used to detect a quantized photogalvanic optical response, the chiral magnetic effect and other optoelectronic phenomena predicted for this class of materials.},
doi = {10.1038/s41586-019-1037-2},
journal = {Nature (London)},
number = 7749,
volume = 567,
place = {United States},
year = {Wed Mar 20 00:00:00 EDT 2019},
month = {Wed Mar 20 00:00:00 EDT 2019}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 183 works
Citation information provided by
Web of Science

Figures / Tables:

FIG. 1 FIG. 1: Structural chirality and topological chirality in CoSi and RhSi. a, Chiral crystal structure of XSi (X = Co, Rh), space group P213, No. 198. b, Single crystal X-ray diffraction precession pattern of the (0kl) planes of CoSi at 100 K. The resolved spots confirm space group P213 withmore » lattice constant a = 4.433(4) Å. c, Three-dimensional Fourier map showing the electron density in the B20 CoSi structure. d, Ab initio calculation of the electronic bulk band structure along high-symmetry lines. A 3-fold degenerate topological chiral fermion is predicted at Γ and a 4-fold topological chiral fermion at R; these carry Chern numbers +2 and −2, respectively. The highest valence (blue) and lowest conduction (red) bands fix a topologically non-trivial energy window (green dotted lines). e, Bulk Brillouin zone (BZ) and (001) surface BZ with high-symmetry points and the predicted chiral fermions (red and blue spheres) marked. f, Ab initio calculation of the surface spectral weight on the (001) surface for CoSi, with the (001) surface BZ marked (red box). The predicted bulk chiral fermions project onto $\bar{Γ}$and $\bar{M}$ , connected by a pair of topological Fermi arcs extending diagonally across the surface BZ.« less

Save / Share:

Works referenced in this record:

Criteria for Directly Detecting Topological Fermi Arcs in Weyl Semimetals
journal, February 2016


Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

Filling constraints for spin-orbit coupled insulators in symmorphic and nonsymmorphic crystals
journal, November 2015

  • Watanabe, Haruki; Po, Hoi Chun; Vishwanath, Ashvin
  • Proceedings of the National Academy of Sciences, Vol. 112, Issue 47
  • DOI: 10.1073/pnas.1514665112

Topological insulators and superconductors
journal, October 2011


Topological quantum properties of chiral crystals
text, January 2018

  • Chang, Guoqing; Wieder, Benjamin J.; Schindler, Frank
  • Nature Publishing Group
  • DOI: 10.5167/uzh-158525

Weyl semimetals, Fermi arcs and chiral anomalies
journal, October 2016

  • Jia, Shuang; Xu, Su-Yang; Hasan, M. Zahid
  • Nature Materials, Vol. 15, Issue 11
  • DOI: 10.1038/nmat4787

Single crystal investigation of the new phase Er0.85Co4.31Si and of CoSi
journal, January 2008

  • Demchenko, Pavlo; KoŃCzyk, Joanna; Bodak, Oksana
  • Chemistry of Metals and Alloys, Vol. 1, Issue 1
  • DOI: 10.30970/cma1.0024

Ultraquantum magnetoresistance in the Kramers-Weyl semimetal candidate β Ag 2 Se
journal, October 2017


Weyl Metals
journal, March 2018


Topological Materials: Weyl Semimetals
journal, March 2017


From ultrasoft pseudopotentials to the projector augmented-wave method
journal, January 1999


Weyl semimetal with broken time reversal and inversion symmetries
journal, April 2012


Existence of bulk chiral fermions and crystal symmetry
journal, April 2012


Experimental observation of topological Fermi arcs in type-II Weyl semimetal MoTe2
journal, September 2016

  • Deng, Ke; Wan, Guoliang; Deng, Peng
  • Nature Physics, Vol. 12, Issue 12
  • DOI: 10.1038/nphys3871

Chern Semimetal and the Quantized Anomalous Hall Effect in HgCr 2 Se 4
journal, October 2011


Signatures of the Adler–Bell–Jackiw chiral anomaly in a Weyl fermion semimetal
journal, February 2016

  • Zhang, Cheng-Long; Xu, Su-Yang; Belopolski, Ilya
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms10735

Ultraquantum magnetoresistance in the Kramers-Weyl semimetal candidate $\beta− Ag_2 Se$
text, January 2017

  • Zhang, Cheng-Long; Schindler, Frank; Liu, Haiwen
  • American Physical Society
  • DOI: 10.5167/uzh-144076

Dirac Fermions in Solids: From High-T c Cuprates and Graphene to Topological Insulators and Weyl Semimetals
journal, March 2014


Elektron und gravitation. I
journal, November 1986


Chirality meets topology
journal, October 2018


The strange topology that is reshaping physics
journal, July 2017


Unconventional Chiral Fermions and Large Topological Fermi Arcs in RhSi
journal, November 2017


Discovery of Weyl Fermion Semimetals and Topological Fermi Arc States
journal, March 2017


Multiple Types of Topological Fermions in Transition Metal Silicides
journal, November 2017


Topological semimetals with helicoid surface states
journal, June 2016

  • Fang, Chen; Lu, Ling; Liu, Junwei
  • Nature Physics, Vol. 12, Issue 10
  • DOI: 10.1038/nphys3782

Topological insulators, topological superconductors and Weyl fermion semimetals: discoveries, perspectives and outlooks
journal, September 2015


Giant and anisotropic many-body spin–orbit tunability in a strongly correlated kagome magnet
journal, September 2018


Spectroscopic evidence for a type II Weyl semimetallic state in MoTe2
journal, July 2016

  • Huang, Lunan; McCormick, Timothy M.; Ochi, Masayuki
  • Nature Materials, Vol. 15, Issue 11
  • DOI: 10.1038/nmat4685

Topological quantum properties of chiral crystals
journal, October 2018


Fermi arc electronic structure and Chern numbers in the type-II Weyl semimetal candidate Mo x W 1 x Te 2
journal, August 2016


Type-II Weyl semimetals
journal, November 2015

  • Soluyanov, Alexey A.; Gresch, Dominik; Wang, Zhijun
  • Nature, Vol. 527, Issue 7579
  • DOI: 10.1038/nature15768

A short history of SHELX
journal, December 2007

  • Sheldrick, George M.
  • Acta Crystallographica Section A Foundations of Crystallography, Vol. 64, Issue 1, p. 112-122
  • DOI: 10.1107/S0108767307043930

Colloquium: Topological insulators
journal, November 2010


Elektron und Gravitation. I
journal, May 1929


The physics of quantum materials
journal, October 2017


Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
journal, October 1996


Weyl Semimetal in a Topological Insulator Multilayer
journal, September 2011


Discovery of a Weyl fermion semimetal and topological Fermi arcs
journal, July 2015


The Adler-Bell-Jackiw anomaly and Weyl fermions in a crystal
journal, November 1983


Quantized circular photogalvanic effect in Weyl semimetals
journal, July 2017

  • de Juan, Fernando; Grushin, Adolfo G.; Morimoto, Takahiro
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms15995

Reducing Dzyaloshinskii-Moriya interaction and field-free spin-orbit torque switching in synthetic antiferromagnets
journal, May 2021


Observation of Fermi arcs in the type-II Weyl semimetal candidate WTe 2
journal, September 2016


Beyond Dirac and Weyl fermions: Unconventional quasiparticles in conventional crystals
journal, July 2016


Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates
journal, May 2011


Spin-orbit semimetals in the layer groups
journal, October 2016


A Weyl Fermion semimetal with surface Fermi arcs in the transition metal monopnictide TaAs class
journal, June 2015

  • Huang, Shin-Ming; Xu, Su-Yang; Belopolski, Ilya
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms8373

Weyl Semimetal in a Topological Insulator Multilayer
text, January 2011


Weyl semimetal with broken time reversal and inversion symmetries
text, January 2012


Discovery of a Weyl Fermion Semimetal and Topological Fermi Arcs
text, January 2015


Type-II Weyl Semimetals
text, January 2015


Signatures of the Adler-Bell-Jackiw chiral anomaly in a Weyl Fermion semimetal
text, January 2016


Beyond Dirac and Weyl fermions: Unconventional quasiparticles in conventional crystals
text, January 2016


Spectroscopic evidence for type II Weyl semimetal state in MoTe2
text, January 2016


Spin-Orbit Semimetals in the Layer Groups
text, January 2016


Topological Materials: Weyl Semimetals
text, January 2016


Discovery of Weyl fermion semimetals and topological Fermi arc states
text, January 2017


Weyl Metals
text, January 2017


Multiple types of topological fermions in transition metal silicides
text, January 2017


Works referencing / citing this record:

Optical response of the chiral topological semimetal RhSi
journal, October 2019


Strong and fragile topological Dirac semimetals with higher-order Fermi arcs
journal, January 2020


Topological triply degenerate point with double Fermi arcs
journal, April 2019


Magnetic skyrmions in nanostructures of non-centrosymmetric materials
journal, December 2019

  • Mathur, Nitish; Stolt, Matthew J.; Jin, Song
  • APL Materials, Vol. 7, Issue 12
  • DOI: 10.1063/1.5130423

Higher-Order Topology, Monopole Nodal Lines, and the Origin of Large Fermi Arcs in Transition Metal Dichalcogenides X Te 2 ( X = Mo , W )
journal, October 2019


Electronic Structure of B20 (FeSi-Type) Transition-Metal Monosilicides
journal, August 2019

  • Pshenay-Severin, Dmitry A.; Burkov, Alexander T.
  • Materials, Vol. 12, Issue 17
  • DOI: 10.3390/ma12172710

Chiral fermion reversal in chiral crystals
journal, December 2019


Chiral topological semimetal with multifold band crossings and long Fermi arcs
journal, May 2019


Thermoelectric and galvanomagnetic properties of topologically non-trivial (Co-M)Si semimetals (M = Fe, Ni) at high temperatures
journal, December 2019

  • Antonov, A.; Ivanov, Yu.; Konstantinov, P.
  • Journal of Applied Physics, Vol. 126, Issue 24
  • DOI: 10.1063/1.5119209

Chiral Magnetism and High-Temperature Skyrmions in B20-Ordered Co-Si
journal, February 2020


Signatures of a Charge Density Wave Phase and the Chiral Anomaly in the Fermionic Material Cobalt Monosilicide CoSi
text, January 2019


Photoinduced interfacial chiral modes in threefold topological semimetal
journal, October 2019


Observation of a topological nodal surface and its surface-state arcs in an artificial acoustic crystal
journal, November 2019


Quantum oscillations and electronic structure in the large–Chern number semimetal RhSn
journal, December 2019


Photoemission Spectroscopic Evidence for the Dirac Nodal Line in the Monoclinic Semimetal SrAs 3
journal, February 2020


Strong and fragile topological Dirac semimetals with higher-order Fermi arcs
text, January 2020


Growth and Strain Engineering of Trigonal Te for Topological Quantum Phases in Non-Symmorphic Chiral Crystals
journal, September 2019

  • Basnet, Rabindra; Doha, M.; Hironaka, Takayuki
  • Crystals, Vol. 9, Issue 10
  • DOI: 10.3390/cryst9100486

Signatures of a Charge Density Wave Phase and the Chiral Anomaly in the Fermionic Material Cobalt Monosilicide CoSi
journal, November 2019

  • Schnatmann, Lauritz; Geishendorf, Kevin; Lammel, Michaela
  • Advanced Electronic Materials, Vol. 6, Issue 2
  • DOI: 10.1002/aelm.201900857

Absolute Structure from Scanning Electron Microscopy
journal, March 2020


Angle-resolved photoemission spectroscopy and its application to topological materials
journal, August 2019


Signatures of Sixfold Degenerate Exotic Fermions in a Superconducting Metal PdSb 2
journal, February 2020


Quasiparticle interference evidence of the topological Fermi arc states in chiral fermionic semimetal CoSi
journal, December 2019


Linear optical conductivity of chiral multifold fermions
text, January 2019


Difference frequency generation in topological semimetals
text, January 2019


Strong and Fragile Topological Dirac Semimetals with Higher-Order Fermi Arcs
text, January 2019


Growth and Strain Engineering of Trigonal Te for Topological Quantum Phases in Non-Symmorphic Chiral Crystals
preprint, January 2019


Observation of a topological nodal surface and its surface-state arcs in an artificial acoustic crystal
journal, November 2019


Chiral fermion reversal in chiral crystals
journal, December 2019


Absolute Structure from Scanning Electron Microscopy
journal, March 2020


Micromagnetic description of twisted spin spirals in the B20 chiral magnet FeGe from first principles
journal, August 2021


Spin Hall effect in a spin-1 chiral semimetal
journal, July 2021


Electronic Structure of B20 (FeSi-Type) Transition-Metal Monosilicides
journal, August 2019

  • Pshenay-Severin, Dmitry A.; Burkov, Alexander T.
  • Materials, Vol. 12, Issue 17
  • DOI: 10.3390/ma12172710

Identification of chirality of chiral multifold fermions in anti-crystals
preprint, January 2020


d-wave superconductivity and Bogoliubov-Fermi surfaces in Rarita-Schwinger-Weyl semimetals
text, January 2020


Sixfold fermion near the Fermi level in cubic PtBi2
text, January 2020


Discovery of magnetic topological crystals
text, January 2020


Broadband optical conductivity of the chiral multifold semimetal PdGa
text, January 2021