DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Discovery of Stable and Selective Antibody Mimetics from Combinatorial Libraries of Polyvalent, Loop-Functionalized Peptoid Nanosheets

Abstract

The ability of antibodies to bind a wide variety of analytes with high specificity and high affinity make them ideal candidates for therapeutic and diagnostic applications. However, the poor stability and high production cost of antibodies has prompted exploration of a variety of new, synthetic materials capable of specific molecular recognition. Unfortunately, it remains a fundamental challenge to create a chemically-diverse population of protein-like, folded synthetic nanostructures with defined molecular conformations in water. Here we report the synthesis and screening of combinatorial libraries of sequence-defined peptoid polymers engineered to fold into ordered, supramolecular nanosheets displaying a high spatial density of diverse, conformationallyconstrained loops on their surface. These polyvalent, loop-functionalized nanosheets were screened using a homogeneous Förster resonance energy transfer (FRET) assay for binding to a variety of protein targets. Peptoid sequences were identified that bound to the heptameric protein, anthrax protective antigen, with high avidity and selectivity. These nanosheets were shown to be resistant to proteolytic degradation, and the binding to be dependent on the loop display density. This work demonstrates that key aspects of antibody structure and function – the creation of multivalent, combinatorial chemical diversity within a well-defined folded structure – can be realized with completely synthetic materials.more » This approach enables the rapid discovery of biomimetic affinity reagents that combine the durability of synthetic materials with the specificity of biomolecular materials.« less

Authors:
 [1]; ORCiD logo [2];  [1];  [1];  [1];  [2];  [2];  [3];  [4];  [4]; ORCiD logo [4];  [1]; ORCiD logo [1];  [1];  [1]; ORCiD logo [1]; ORCiD logo [4];  [5]; ORCiD logo [6]; ORCiD logo [1]
  1. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Molecular Foundry
  2. Univ. of California, San Francisco, CA (United States). Dept of Bioengineering and Therapeutic Sciences
  3. New York Univ. (NYU), NY (United States). Dept. of Chemistry
  4. Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Physical Sciences Div.
  5. Department of Chemistry, New York University, New York, New York 10003, United States
  6. Univ. of California, San Francisco, CA (United States). Dept of Bioengineering and Therapeutic Sciences; Chan Zuckerberg Biohub, San Francisco, CA (United States)
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); DARPA Fold F(x) program.
OSTI Identifier:
1619149
Alternate Identifier(s):
OSTI ID: 1659114
Report Number(s):
PNNL-SA-155692
Journal ID: ISSN 1936-0851; ark:/13030/qt13n2z6v4
Grant/Contract Number:  
AC02-05CH11231; AC05-76RL01830
Resource Type:
Accepted Manuscript
Journal Name:
ACS Nano
Additional Journal Information:
Journal Volume: 14; Journal Issue: 1; Journal ID: ISSN 1936-0851
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES; 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; protein-mimetic materials; multivalent molecular recognition; combinatorial display; two-dimensional nanomaterials, bioinspired polymers; two-dimensional

Citation Formats

Kim, Jae Hong, Kim, Samuel C., Kline, Mark A., Grzincic, Elissa M., Tresca, Blakely W., Cardiel, Joshua, Karbaschi, Mohsen, Dehigaspitiya, Dilani C., Chen, Yulin, Udumula, Venkatareddy, Jian, Tengyue, Murray, Daniel J., Yun, Lisa, Connolly, Michael D., Liu, Jianfang, Ren, Gang, Chen, Chun-Long, Kirshenbaum, Kent, Abate, Adam R., and Zuckermann, Ronald N. Discovery of Stable and Selective Antibody Mimetics from Combinatorial Libraries of Polyvalent, Loop-Functionalized Peptoid Nanosheets. United States: N. p., 2019. Web. doi:10.1021/acsnano.9b07498.
Kim, Jae Hong, Kim, Samuel C., Kline, Mark A., Grzincic, Elissa M., Tresca, Blakely W., Cardiel, Joshua, Karbaschi, Mohsen, Dehigaspitiya, Dilani C., Chen, Yulin, Udumula, Venkatareddy, Jian, Tengyue, Murray, Daniel J., Yun, Lisa, Connolly, Michael D., Liu, Jianfang, Ren, Gang, Chen, Chun-Long, Kirshenbaum, Kent, Abate, Adam R., & Zuckermann, Ronald N. Discovery of Stable and Selective Antibody Mimetics from Combinatorial Libraries of Polyvalent, Loop-Functionalized Peptoid Nanosheets. United States. https://doi.org/10.1021/acsnano.9b07498
Kim, Jae Hong, Kim, Samuel C., Kline, Mark A., Grzincic, Elissa M., Tresca, Blakely W., Cardiel, Joshua, Karbaschi, Mohsen, Dehigaspitiya, Dilani C., Chen, Yulin, Udumula, Venkatareddy, Jian, Tengyue, Murray, Daniel J., Yun, Lisa, Connolly, Michael D., Liu, Jianfang, Ren, Gang, Chen, Chun-Long, Kirshenbaum, Kent, Abate, Adam R., and Zuckermann, Ronald N. Mon . "Discovery of Stable and Selective Antibody Mimetics from Combinatorial Libraries of Polyvalent, Loop-Functionalized Peptoid Nanosheets". United States. https://doi.org/10.1021/acsnano.9b07498. https://www.osti.gov/servlets/purl/1619149.
@article{osti_1619149,
title = {Discovery of Stable and Selective Antibody Mimetics from Combinatorial Libraries of Polyvalent, Loop-Functionalized Peptoid Nanosheets},
author = {Kim, Jae Hong and Kim, Samuel C. and Kline, Mark A. and Grzincic, Elissa M. and Tresca, Blakely W. and Cardiel, Joshua and Karbaschi, Mohsen and Dehigaspitiya, Dilani C. and Chen, Yulin and Udumula, Venkatareddy and Jian, Tengyue and Murray, Daniel J. and Yun, Lisa and Connolly, Michael D. and Liu, Jianfang and Ren, Gang and Chen, Chun-Long and Kirshenbaum, Kent and Abate, Adam R. and Zuckermann, Ronald N.},
abstractNote = {The ability of antibodies to bind a wide variety of analytes with high specificity and high affinity make them ideal candidates for therapeutic and diagnostic applications. However, the poor stability and high production cost of antibodies has prompted exploration of a variety of new, synthetic materials capable of specific molecular recognition. Unfortunately, it remains a fundamental challenge to create a chemically-diverse population of protein-like, folded synthetic nanostructures with defined molecular conformations in water. Here we report the synthesis and screening of combinatorial libraries of sequence-defined peptoid polymers engineered to fold into ordered, supramolecular nanosheets displaying a high spatial density of diverse, conformationallyconstrained loops on their surface. These polyvalent, loop-functionalized nanosheets were screened using a homogeneous Förster resonance energy transfer (FRET) assay for binding to a variety of protein targets. Peptoid sequences were identified that bound to the heptameric protein, anthrax protective antigen, with high avidity and selectivity. These nanosheets were shown to be resistant to proteolytic degradation, and the binding to be dependent on the loop display density. This work demonstrates that key aspects of antibody structure and function – the creation of multivalent, combinatorial chemical diversity within a well-defined folded structure – can be realized with completely synthetic materials. This approach enables the rapid discovery of biomimetic affinity reagents that combine the durability of synthetic materials with the specificity of biomolecular materials.},
doi = {10.1021/acsnano.9b07498},
journal = {ACS Nano},
number = 1,
volume = 14,
place = {United States},
year = {Mon Dec 02 00:00:00 EST 2019},
month = {Mon Dec 02 00:00:00 EST 2019}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 28 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Beyond natural antibodies: the power of in vitro display technologies
journal, March 2011

  • Bradbury, Andrew R. M.; Sidhu, Sachdev; Dübel, Stefan
  • Nature Biotechnology, Vol. 29, Issue 3
  • DOI: 10.1038/nbt.1791

Engineered antibody fragments and the rise of single domains
journal, September 2005

  • Holliger, Philipp; Hudson, Peter J.
  • Nature Biotechnology, Vol. 23, Issue 9
  • DOI: 10.1038/nbt1142

Synthetic antibody mimics for the inhibition of protein–ligand interactions
journal, October 2017

  • Haußner, Christina; Lach, Johannes; Eichler, Jutta
  • Current Opinion in Chemical Biology, Vol. 40
  • DOI: 10.1016/j.cbpa.2017.07.001

Engineering novel binding proteins from nonimmunoglobulin domains
journal, October 2005

  • Binz, H. Kaspar; Amstutz, Patrick; Plückthun, Andreas
  • Nature Biotechnology, Vol. 23, Issue 10
  • DOI: 10.1038/nbt1127

Mimicking nature with synthetic macromolecules capable of recognition
journal, July 2014

  • Mahon, Clare S.; Fulton, David A.
  • Nature Chemistry, Vol. 6, Issue 8
  • DOI: 10.1038/nchem.1994

Synthetic receptors with antibody-like binding affinities
journal, December 2010


Transformation of the amyloidogenic peptide amylin(20–29) into its corresponding peptoid and retropeptoid: Access to both an amyloid inhibitor and template for self-assembled supramolecular tapes
journal, April 2007

  • Elgersma, Ronald C.; Mulder, Gwenn E.; Kruijtzer, John A. W.
  • Bioorganic & Medicinal Chemistry Letters, Vol. 17, Issue 7
  • DOI: 10.1016/j.bmcl.2007.01.042

Hierarchical Self-Assembly of a Biomimetic Diblock Copolypeptoid into Homochiral Superhelices
journal, November 2010

  • Murnen, Hannah K.; Rosales, Adrianne M.; Jaworski, Jonathan N.
  • Journal of the American Chemical Society, Vol. 132, Issue 45
  • DOI: 10.1021/ja106340f

Free-floating ultrathin two-dimensional crystals from sequence-specific peptoid polymers
journal, April 2010

  • Nam, Ki Tae; Shelby, Sarah A.; Choi, Philip H.
  • Nature Materials, Vol. 9, Issue 5
  • DOI: 10.1038/nmat2742

Tunable peptoid microspheres: effects of side chain chemistry and sequence
journal, January 2013

  • Hebert, Melissa L.; Shah, Dhaval S.; Blake, Phillip
  • Organic & Biomolecular Chemistry, Vol. 11, Issue 27
  • DOI: 10.1039/c3ob40561c

Self-assembly of crystalline nanotubes from monodisperse amphiphilic diblock copolypeptoid tiles
journal, March 2016

  • Sun, Jing; Jiang, Xi; Lund, Reidar
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 15
  • DOI: 10.1073/pnas.1517169113

Designable and dynamic single-walled stiff nanotubes assembled from sequence-defined peptoids
journal, January 2018


Highly stable and self-repairing membrane-mimetic 2D nanomaterials assembled from lipid-like peptoids
journal, July 2016

  • Jin, Haibao; Jiao, Fang; Daily, Michael D.
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms12252

Atomic-level engineering and imaging of polypeptoid crystal lattices
journal, October 2019

  • Xuan, Sunting; Jiang, Xi; Spencer, Ryan K.
  • Proceedings of the National Academy of Sciences, Vol. 116, Issue 45
  • DOI: 10.1073/pnas.1909992116

Efficient method for the preparation of peptoids [oligo(N-substituted glycines)] by submonomer solid-phase synthesis
journal, December 1992

  • Zuckermann, Ronald N.; Kerr, Janice M.; Kent, Stephen B. H.
  • Journal of the American Chemical Society, Vol. 114, Issue 26
  • DOI: 10.1021/ja00052a076

Sequence Programmable Peptoid Polymers for Diverse Materials Applications
journal, April 2015

  • Knight, Abigail S.; Zhou, Effie Y.; Francis, Matthew B.
  • Advanced Materials, Vol. 27, Issue 38
  • DOI: 10.1002/adma.201500275

Design, Synthesis, Assembly, and Engineering of Peptoid Nanosheets
journal, January 2016

  • Robertson, Ellen J.; Battigelli, Alessia; Proulx, Caroline
  • Accounts of Chemical Research, Vol. 49, Issue 3
  • DOI: 10.1021/acs.accounts.5b00439

Antibody-Mimetic Peptoid Nanosheets for Molecular Recognition
journal, September 2013

  • Olivier, Gloria K.; Cho, Andrew; Sanii, Babak
  • ACS Nano, Vol. 7, Issue 10
  • DOI: 10.1021/nn403899y

Antibody-Mimetic Peptoid Nanosheet for Label-Free Serum-Based Diagnosis of Alzheimer's Disease
journal, June 2017


Glycosylated Peptoid Nanosheets as a Multivalent Scaffold for Protein Recognition
journal, February 2018

  • Battigelli, Alessia; Kim, Jae Hong; Dehigaspitiya, Dilani C.
  • ACS Nano, Vol. 12, Issue 3
  • DOI: 10.1021/acsnano.7b08018

Ultralow-Fouling, Functionalizable, and Hydrolyzable Zwitterionic Materials and Their Derivatives for Biological Applications
journal, November 2009


Designing super selectivity in multivalent nano-particle binding
journal, June 2011

  • Martinez-Veracoechea, F. J.; Frenkel, D.
  • Proceedings of the National Academy of Sciences, Vol. 108, Issue 27
  • DOI: 10.1073/pnas.1105351108

Peptoid Polymers: A Highly Designable Bioinspired Material
journal, May 2013


Comparison of the proteolytic susceptibilities of homologous L-amino acid, D-amino acid, and N-substituted glycine peptide and peptoid oligomers
journal, May 1995

  • Miller, Susan M.; Simon, Reyna J.; Ng, Simon
  • Drug Development Research, Vol. 35, Issue 1
  • DOI: 10.1002/ddr.430350105

Improved chemical and mechanical stability of peptoid nanosheets by photo-crosslinking the hydrophobic core
journal, January 2016

  • Flood, Dillon; Proulx, Caroline; Robertson, Ellen J.
  • Chemical Communications, Vol. 52, Issue 26
  • DOI: 10.1039/C6CC00588H

Cyclic Peptoids
journal, March 2007

  • Shin, Sung Bin Y.; Yoo, Barney; Todaro, Louis J.
  • Journal of the American Chemical Society, Vol. 129, Issue 11
  • DOI: 10.1021/ja066960o

Assembly and molecular order of two-dimensional peptoid nanosheets through the oil–water interface
journal, September 2014

  • Robertson, Ellen J.; Olivier, Gloria K.; Qian, Menglu
  • Proceedings of the National Academy of Sciences, Vol. 111, Issue 37
  • DOI: 10.1073/pnas.1414843111

Shaken, Not Stirred: Collapsing a Peptoid Monolayer To Produce Free-Floating, Stable Nanosheets
journal, December 2011

  • Sanii, Babak; Kudirka, Romas; Cho, Andrew
  • Journal of the American Chemical Society, Vol. 133, Issue 51
  • DOI: 10.1021/ja206199d

A Simple Statistical Parameter for Use in Evaluation and Validation of High Throughput Screening Assays
journal, April 1999


Designing a polyvalent inhibitor of anthrax toxin
journal, October 2001

  • Mourez, Michael; Kane, Ravi S.; Mogridge, Jeremy
  • Nature Biotechnology, Vol. 19, Issue 10
  • DOI: 10.1038/nbt1001-958

Design of Monodisperse and Well-Defined Polypeptide-Based Polyvalent Inhibitors of Anthrax Toxin
journal, April 2014

  • Patke, Sanket; Boggara, Mohan; Maheshwari, Ronak
  • Angewandte Chemie International Edition, Vol. 53, Issue 31
  • DOI: 10.1002/anie.201400870

Structure-Based Design of a Heptavalent Anthrax Toxin Inhibitor
journal, March 2011

  • Joshi, Amit; Kate, Sandesh; Poon, Vincent
  • Biomacromolecules, Vol. 12, Issue 3
  • DOI: 10.1021/bm101396u

Aromatic–Proline Interactions: Electronically Tunable CH/π Interactions
journal, June 2012

  • Zondlo, Neal J.
  • Accounts of Chemical Research, Vol. 46, Issue 4
  • DOI: 10.1021/ar300087y

Uniform, Large-Area, Highly Ordered Peptoid Monolayer and Bilayer Films for Sensing Applications
journal, September 2019


Protection against anthrax toxin by recombinant antibody fragments correlates with antigen affinity
journal, June 2002

  • Maynard, Jennifer A.; Maassen, Catharina B. M.; Leppla, Stephen H.
  • Nature Biotechnology, Vol. 20, Issue 6
  • DOI: 10.1038/nbt0602-597

Computational design of trimeric influenza-neutralizing proteins targeting the hemagglutinin receptor binding site
journal, June 2017

  • Strauch, Eva-Maria; Bernard, Steffen M.; La, David
  • Nature Biotechnology, Vol. 35, Issue 7
  • DOI: 10.1038/nbt.3907

Proteolytic studies of homologous peptide and N-substituted glycine peptoid oligomers
journal, November 1994


Discovery of Nanomolar Ligands for 7-Transmembrane G-Protein-Coupled Receptors from a Diverse N-(Substituted)glycine Peptoid Library
journal, August 1994

  • Zuckermann, Ronald N.; Martin, Eric J.; Spellmeyer, David C.
  • Journal of Medicinal Chemistry, Vol. 37, Issue 17
  • DOI: 10.1021/jm00043a007

Accelerated Submonomer Solid-Phase Synthesis of Peptoids Incorporating Multiple Substituted N -Aryl Glycine Monomers
journal, August 2015

  • Proulx, Caroline; Yoo, Stan; Connolly, Michael D.
  • The Journal of Organic Chemistry, Vol. 80, Issue 21
  • DOI: 10.1021/acs.joc.5b01449

Binding Stoichiometry and Kinetics of the Interaction of a Human Anthrax Toxin Receptor, CMG2, with Protective Antigen
journal, May 2004

  • Wigelsworth, Darran J.; Krantz, Bryan A.; Christensen, Kenneth A.
  • Journal of Biological Chemistry, Vol. 279, Issue 22
  • DOI: 10.1074/jbc.M401292200

Assembly and Disassembly Kinetics of Anthrax Toxin Complexes
journal, January 2006

  • Christensen, Kenneth A.; Krantz, Bryan A.; Collier, R. John
  • Biochemistry, Vol. 45, Issue 7
  • DOI: 10.1021/bi051830y

An optimized negative-staining protocol of electron microscopy for apoE4•POPC lipoprotein
journal, November 2009

  • Zhang, Lei; Song, James; Newhouse, Yvonne
  • Journal of Lipid Research, Vol. 51, Issue 5
  • DOI: 10.1194/jlr.D002493

Optimized Negative Staining: a High-throughput Protocol for Examining Small and Asymmetric Protein Structure by Electron Microscopy
journal, January 2014

  • Rames, Matthew; Yu, Yadong; Ren, Gang
  • Journal of Visualized Experiments, Issue 90
  • DOI: 10.3791/51087

Morphology and structure of lipoproteins revealed by an optimized negative-staining protocol of electron microscopy
journal, October 2010

  • Zhang, Lei; Song, James; Cavigiolio, Giorgio
  • Journal of Lipid Research, Vol. 52, Issue 1
  • DOI: 10.1194/jlr.D010959