DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Cluster Cosmology with the Velocity Distribution Function of the HeCS-SZ Sample

Abstract

We apply the velocity distribution function (VDF) to a sample of Sunyaev–Zel'dovich (SZ)-selected clusters, and we report preliminary cosmological constraints in the $${\sigma }_{8}$$-$${{\rm{\Omega }}}_{m}$$ cosmological parameter space. The VDF is a forward-modeled test statistic that can be used to constrain cosmological models directly from galaxy cluster dynamical observations. The method was introduced in Ntampaka et al. and employs line-of-sight velocity measurements to directly constrain cosmological parameters; it is less sensitive to measurement error than a standard halo mass function approach. The method is applied to the Hectospec Survey of Sunyaev–Zeldovich-Selected Clusters sample, which is a spectroscopic follow-up of a Planck-selected sample of 83 galaxy clusters. Credible regions are calculated by comparing the VDF of the observed cluster sample to that of mock observations, yielding $${{ \mathcal S }}_{8}$$ $$\equiv \,{\sigma }_{8}{\left({{\rm{\Omega }}}_{m}/0.3\right)}^{0.25}=0.751\pm 0.037$$. These constraints are in tension with the Planck Cosmic Microwave Background TT fiducial value, which lies outside of our 95% credible region, but are in agreement with some recent analyses of large-scale structure that observe fewer massive clusters than are predicted by the Planck fiducial cosmological parameters.

Authors:
ORCiD logo [1];  [2]; ORCiD logo [3]
  1. Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States); Harvard Univ., Cambridge, MA (United States)
  2. Western Washington Univ., Bellingham, WA (United States)
  3. Carnegie Mellon Univ., Pittsburgh, PA (United States)
Publication Date:
Research Org.:
Carnegie Mellon Univ., Pittsburgh, PA (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1611605
Grant/Contract Number:  
SC0011114
Resource Type:
Accepted Manuscript
Journal Name:
The Astrophysical Journal (Online)
Additional Journal Information:
Journal Name: The Astrophysical Journal (Online); Journal Volume: 880; Journal Issue: 2; Journal ID: ISSN 1538-4357
Publisher:
Institute of Physics (IOP)
Country of Publication:
United States
Language:
English
Subject:
79 ASTRONOMY AND ASTROPHYSICS; Astronomy & Astrophysics

Citation Formats

Ntampaka, Michelle, Rines, Ken, and Trac, Hy. Cluster Cosmology with the Velocity Distribution Function of the HeCS-SZ Sample. United States: N. p., 2019. Web. doi:10.3847/1538-4357/ab2a00.
Ntampaka, Michelle, Rines, Ken, & Trac, Hy. Cluster Cosmology with the Velocity Distribution Function of the HeCS-SZ Sample. United States. https://doi.org/10.3847/1538-4357/ab2a00
Ntampaka, Michelle, Rines, Ken, and Trac, Hy. Mon . "Cluster Cosmology with the Velocity Distribution Function of the HeCS-SZ Sample". United States. https://doi.org/10.3847/1538-4357/ab2a00. https://www.osti.gov/servlets/purl/1611605.
@article{osti_1611605,
title = {Cluster Cosmology with the Velocity Distribution Function of the HeCS-SZ Sample},
author = {Ntampaka, Michelle and Rines, Ken and Trac, Hy},
abstractNote = {We apply the velocity distribution function (VDF) to a sample of Sunyaev–Zel'dovich (SZ)-selected clusters, and we report preliminary cosmological constraints in the ${\sigma }_{8}$-${{\rm{\Omega }}}_{m}$ cosmological parameter space. The VDF is a forward-modeled test statistic that can be used to constrain cosmological models directly from galaxy cluster dynamical observations. The method was introduced in Ntampaka et al. and employs line-of-sight velocity measurements to directly constrain cosmological parameters; it is less sensitive to measurement error than a standard halo mass function approach. The method is applied to the Hectospec Survey of Sunyaev–Zeldovich-Selected Clusters sample, which is a spectroscopic follow-up of a Planck-selected sample of 83 galaxy clusters. Credible regions are calculated by comparing the VDF of the observed cluster sample to that of mock observations, yielding ${{ \mathcal S }}_{8}$ $\equiv \,{\sigma }_{8}{\left({{\rm{\Omega }}}_{m}/0.3\right)}^{0.25}=0.751\pm 0.037$. These constraints are in tension with the Planck Cosmic Microwave Background TT fiducial value, which lies outside of our 95% credible region, but are in agreement with some recent analyses of large-scale structure that observe fewer massive clusters than are predicted by the Planck fiducial cosmological parameters.},
doi = {10.3847/1538-4357/ab2a00},
journal = {The Astrophysical Journal (Online)},
number = 2,
volume = 880,
place = {United States},
year = {Mon Aug 05 00:00:00 EDT 2019},
month = {Mon Aug 05 00:00:00 EDT 2019}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 7 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: Left: the redshift and SZ mass (M500,SZ) distribution of one sample mock observation (red circles) and that of the HECS-SZ sample with b=0 (blue x’s). The selection function with b=0 (solid black curve) shows the limit above which the sample is modeled to have integral completeness $\mathcal{C}\in$ [0.6,more » 1.0], with $\mathcal{C}$= 0.8 shown. The discontinuity at z=0.2 is due to two different observing methods being employed above and below this redshift. When the selection function is applied to the mock light cones, it is varied by a multiplicative factor of (1−b)−1 until the number of clusters above the selection function matches the number of clusters expected, given the HECS-SZ observation and choice of $\mathcal{C}$ . The mock observation is clearly not in agreement with that of the HECS-SZ observation for b=0. Right: Planck Collaboration et al. (2016b) reports that a bias of b=0.42 is needed to bring the Planck observed M500,SZ masses into agreement with the mass distributions predicted by the Planck CMB fiducial cosmology. When this bias is applied to the HECS-SZ observation (green stars) and selection function (black dash), the HECS-SZ sample is in better agreement with the mock observations, which assume the Planck fiducial cosmology. Summary PDFs of mass and redshift representative of the entire suite of mock observations are shown in Figure 2.« less

Save / Share:

Works referenced in this record:

The SAMI Galaxy Survey: the cluster redshift survey, target selection and cluster properties
text, January 2017

  • Kleijn,, Verdoes; Jong,, de; Sande,, van de
  • The University of North Carolina at Chapel Hill University Libraries
  • DOI: 10.17615/j6e8-2z49

The Velocity Distribution Function of Galaxy Clusters as a Cosmological Probe
journal, January 2017


Planck 2015 results : X. Diffuse component separation: Foreground maps
journal, September 2016


Virial scaling of galaxies in clusters: bright to faint is cool to hot
journal, September 2013

  • Wu, Hao-Yi; Hahn, Oliver; Evrard, August E.
  • Monthly Notices of the Royal Astronomical Society, Vol. 436, Issue 1
  • DOI: 10.1093/mnras/stt1582

Dark Energy Survey year 1 results: Cosmological constraints from galaxy clustering and weak lensing
journal, August 2018


On the efficiency and reliability of cluster mass estimates based on member galaxies
journal, August 2006


The kinematics of cluster galaxies via velocity dispersion profiles
journal, August 2018

  • Bilton, Lawrence E.; Pimbblet, Kevin A.
  • Monthly Notices of the Royal Astronomical Society, Vol. 481, Issue 2
  • DOI: 10.1093/mnras/sty2379

Concentration, ellipsoidal collapse, and the densest dark matter haloes
journal, December 2015

  • Okoli, Chiamaka; Afshordi, Niayesh
  • Monthly Notices of the Royal Astronomical Society, Vol. 456, Issue 3
  • DOI: 10.1093/mnras/stv2905

Planck 2013 results. XVI. Cosmological parameters
journal, October 2014


Toward a Halo Mass Function for Precision Cosmology: The Limits of Universality
journal, December 2008

  • Tinker, Jeremy; Kravtsov, Andrey V.; Klypin, Anatoly
  • The Astrophysical Journal, Vol. 688, Issue 2
  • DOI: 10.1086/591439

The SAMI Galaxy Survey: the cluster redshift survey, target selection and cluster properties
journal, March 2017

  • Owers, M. S.; Allen, J. T.; Baldry, I.
  • Monthly Notices of the Royal Astronomical Society, Vol. 468, Issue 2
  • DOI: 10.1093/mnras/stx562

Cosmological Constraints from Galaxy Clusters in the 2500 Square-Degree Spt-Sz Survey
journal, November 2016


Planck 2013 results. XXIX. The Planck catalogue of Sunyaev-Zeldovich sources
journal, October 2014


Planck 2013 results. XX. Cosmology from Sunyaev–Zeldovich cluster counts
journal, October 2014


The relation between velocity dispersion and mass in simulated clusters of galaxies: dependence on the tracer and the baryonic physics
journal, February 2013

  • Munari, E.; Biviano, A.; Borgani, S.
  • Monthly Notices of the Royal Astronomical Society, Vol. 430, Issue 4
  • DOI: 10.1093/mnras/stt049

Planck 2015 results : XI. CMB power spectra, likelihoods, and robustness of parameters
journal, September 2016


Planck 2015 results : XXIII. The thermal Sunyaev-Zeldovich effect-cosmic infrared background correlation
journal, September 2016


Accurate mass and velocity functions of dark matter haloes
journal, May 2017

  • Comparat, Johan; Prada, Francisco; Yepes, Gustavo
  • Monthly Notices of the Royal Astronomical Society, Vol. 469, Issue 4
  • DOI: 10.1093/mnras/stx1183

CFHTLenS tomographic weak lensing cosmological parameter constraints: Mitigating the impact of intrinsic galaxy alignments
journal, May 2013

  • Heymans, Catherine; Grocutt, Emma; Heavens, Alan
  • Monthly Notices of the Royal Astronomical Society, Vol. 432, Issue 3
  • DOI: 10.1093/mnras/stt601

Planck 2015 results : XIII. Cosmological parameters
journal, September 2016


Planck 2015 results : XXIV. Cosmology from Sunyaev-Zeldovich cluster counts
journal, September 2016


The ESO Nearby Abell Cluster Survey: XI. Segregation of cluster galaxies and subclustering
journal, May 2002


SPT-CL J0546-5345: A MASSIVE z >1 GALAXY CLUSTER SELECTED VIA THE SUNYAEV-ZEL'DOVICH EFFECT WITH THE SOUTH POLE TELESCOPE
journal, August 2010


Toward Unbiased Galaxy Cluster Masses from Line-Of-Sight Velocity Dispersions
journal, July 2013


The cosmological analysis of X-ray cluster surveys: III. 4D X-ray observable diagrams
journal, November 2017


HeCS-SZ: THE HECTOSPEC SURVEY OF SUNYAEV–ZELDOVICH-SELECTED CLUSTERS
journal, February 2016

  • Rines, Kenneth J.; Geller, Margaret J.; Diaferio, Antonaldo
  • The Astrophysical Journal, Vol. 819, Issue 1
  • DOI: 10.3847/0004-637X/819/1/63

Cosmological discordances. II. Hubble constant, Planck and large-scale-structure data sets
journal, October 2017


Localized massive halo properties in bahamas and MACSIS simulations: scalings, lognormality, and covariance
journal, May 2018

  • Farahi, Arya; Evrard, August E.; McCarthy, Ian
  • Monthly Notices of the Royal Astronomical Society, Vol. 478, Issue 2
  • DOI: 10.1093/mnras/sty1179

Weighing the giants – IV. Cosmology and neutrino mass
journal, November 2014

  • Mantz, Adam B.; von der Linden, Anja; Allen, Steven W.
  • Monthly Notices of the Royal Astronomical Society, Vol. 446, Issue 3
  • DOI: 10.1093/mnras/stu2096

Virial Scaling of Massive Dark Matter Halos: Why Clusters Prefer a High Normalization Cosmology
journal, January 2008

  • Evrard, A. E.; Bialek, J.; Busha, M.
  • The Astrophysical Journal, Vol. 672, Issue 1
  • DOI: 10.1086/521616

MultiDark simulations: the story of dark matter halo concentrations and density profiles
journal, February 2016

  • Klypin, Anatoly; Yepes, Gustavo; Gottlöber, Stefan
  • Monthly Notices of the Royal Astronomical Society, Vol. 457, Issue 4
  • DOI: 10.1093/mnras/stw248

Effects of Baryon Dissipation on the dark Matter Virial Scaling Relation
journal, December 2009


MEASURING THE ULTIMATE HALO MASS OF GALAXY CLUSTERS: REDSHIFTS AND MASS PROFILES FROM THE HECTOSPEC CLUSTER SURVEY (HeCS)
journal, March 2013

  • Rines, Kenneth; Geller, Margaret J.; Diaferio, Antonaldo
  • The Astrophysical Journal, Vol. 767, Issue 1
  • DOI: 10.1088/0004-637X/767/1/15

UniverseMachine: The correlation between galaxy growth and dark matter halo assembly from z = 0−10
journal, May 2019

  • Behroozi, Peter; Wechsler, Risa H.; Hearin, Andrew P.
  • Monthly Notices of the Royal Astronomical Society, Vol. 488, Issue 3
  • DOI: 10.1093/mnras/stz1182

Lensing is low: cosmology, galaxy formation or new physics?
journal, February 2017

  • Leauthaud, Alexie; Saito, Shun; Hilbert, Stefan
  • Monthly Notices of the Royal Astronomical Society, Vol. 467, Issue 3
  • DOI: 10.1093/mnras/stx258

MASS CALIBRATION AND COSMOLOGICAL ANALYSIS OF THE SPT-SZ GALAXY CLUSTER SAMPLE USING VELOCITY DISPERSION σ v AND X-RAY Y X MEASUREMENTS
journal, January 2015


The Most Massive Distant Clusters: Determining Ω and σ 8
journal, September 1998

  • Bahcall, Neta A.; Fan, Xiaohui
  • The Astrophysical Journal, Vol. 504, Issue 1
  • DOI: 10.1086/306088

The EAGLE project: simulating the evolution and assembly of galaxies and their environments
journal, November 2014

  • Schaye, Joop; Crain, Robert A.; Bower, Richard G.
  • Monthly Notices of the Royal Astronomical Society, Vol. 446, Issue 1
  • DOI: 10.1093/mnras/stu2058

Cosmology with velocity dispersion counts: an alternative to measuring cluster halo masses
journal, August 2016

  • Caldwell, C. E.; McCarthy, I. G.; Baldry, I. K.
  • Monthly Notices of the Royal Astronomical Society, Vol. 462, Issue 4
  • DOI: 10.1093/mnras/stw1892

Optical Spectroscopy and Velocity Dispersions of Galaxy Clusters from the Spt-Sz Survey
journal, August 2014


The clustering of Galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: including covariance matrix errors
journal, February 2014

  • Percival, Will J.; Ross, Ashley J.; Sánchez, Ariel G.
  • Monthly Notices of the Royal Astronomical Society, Vol. 439, Issue 3
  • DOI: 10.1093/mnras/stu112

Comparison of Hectospec Virial Masses with Sunyaev-Zel'Dovich Effect Measurements
journal, May 2010


The Cluster-EAGLE project: velocity bias and the velocity dispersion–mass relation of cluster galaxies
journal, November 2017

  • Armitage, Thomas J.; Barnes, David J.; Kay, Scott T.
  • Monthly Notices of the Royal Astronomical Society, Vol. 474, Issue 3
  • DOI: 10.1093/mnras/stx3020

Planck 2015 results : VI. LFI mapmaking
journal, September 2016


KiDS-450: cosmological parameter constraints from tomographic weak gravitational lensing
journal, November 2016

  • Hildebrandt, H.; Viola, M.; Heymans, C.
  • Monthly Notices of the Royal Astronomical Society, Vol. 465, Issue 2
  • DOI: 10.1093/mnras/stw2805

The Atacama Cosmology Telescope: Dynamical Masses and Scaling Relations for a Sample of Massive Sunyaev-Zel'Dovich Effect Selected Galaxy Clusters $^,$
journal, July 2013

  • Sifón, Cristóbal; Menanteau, Felipe; Hasselfield, Matthew
  • The Astrophysical Journal, Vol. 772, Issue 1
  • DOI: 10.1088/0004-637X/772/1/25

Why your model parameter confidences might be too optimistic. Unbiased estimation of the inverse covariance matrix
journal, December 2006


A Systematic Analysis of Caustic Methods for Galaxy Cluster Masses
journal, August 2013


On a Formula for Correcting Statistics for the Effects of a known Probable Error of Observation
journal, March 1913

  • Eddington, A. S.
  • Monthly Notices of the Royal Astronomical Society, Vol. 73, Issue 5
  • DOI: 10.1093/mnras/73.5.359

Putting the precision in precision cosmology: How accurate should your data covariance matrix be?
journal, May 2013

  • Taylor, A.; Joachimi, B.; Kitching, T.
  • Monthly Notices of the Royal Astronomical Society, Vol. 432, Issue 3
  • DOI: 10.1093/mnras/stt270

Planck 2015 results : XVI. Isotropy and statistics of the CMB
journal, September 2016


Planck 2015 results : XXVI. The Second
journal, September 2016


Effects of Baryon Dissipation on the Dark Matter Virial Scaling Relation
text, January 2009


Planck 2013 results. XVI. Cosmological parameters
text, January 2013


Planck 2013 results. XXIX. Planck catalogue of Sunyaev-Zeldovich sources
text, January 2013


Weighing the Giants IV: Cosmology and Neutrino Mass
text, January 2014


Planck 2015 results. XIII. Cosmological parameters
text, January 2015


Cosmology with velocity dispersion counts: an alternative to measuring cluster halo masses
text, January 2016


Accurate mass and velocity functions of dark matter halos
text, January 2017


The Cluster-EAGLE project: velocity bias and the velocity dispersion - mass relation of cluster galaxies
text, January 2017


Dark Energy Survey Year 1 Results: Cosmological Constraints from Galaxy Clustering and Weak Lensing
text, January 2017


Works referencing / citing this record:

Using X-Ray Morphological Parameters to Strengthen Galaxy Cluster Mass Estimates via Machine Learning
journal, October 2019

  • Green, Sheridan B.; Ntampaka, Michelle; Nagai, Daisuke
  • The Astrophysical Journal, Vol. 884, Issue 1
  • DOI: 10.3847/1538-4357/ab426f

Cosmological discordances. III. More on measure properties, large-scale-structure constraints, the Hubble constant and Planck data
journal, December 2019