DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Light-Responsive Colloidal Crystals Engineered with DNA

Abstract

A novel method for synthesizing and photopatterning colloidal crystals via light-responsive DNA is developed. These crystals are composed of 10-30 nm gold nanoparticles interconnected with azobenzene-modified DNA strands. The photoisomerization of the azobenzene molecules leads to reversible assembly and disassembly of the base-centered cubic (bcc) and face-centered cubic (fcc) crystalline nanoparticle lattices. In addition, UV light is used as a trigger to selectively remove nanoparticles on centimeter-scale thin films of colloidal crystals, allowing them to be photopatterned into preconceived shapes. The design of the azobenzene-modified linking DNA is critical and involves complementary strands, with azobenzene moieties deliberately staggered between the bases that define the complementary code. This results in a tunable wavelength-dependent melting temperature (Tm) window (4.5-15 degrees C) and one suitable for affecting the desired transformations. In addition to the isomeric state of the azobenzene groups, the size of the particles can be used to modulate the Tm window over which these structures are light-responsive

Authors:
ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]
  1. International Inst. for Nanotechnology, Evanston, IL (United States); Northwestern Univ., Evanston, IL (United States)
  2. Argonne National Lab. (ANL), Argonne, IL (United States)
Publication Date:
Research Org.:
Energy Frontier Research Centers (EFRC) (United States). Center for Bio-Inspired Energy Science (CBES); Argonne National Laboratory (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1608622
Alternate Identifier(s):
OSTI ID: 1591710
Grant/Contract Number:  
SC0000989; AC02‐06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
Advanced Materials
Additional Journal Information:
Journal Volume: 32; Journal Issue: 8; Journal ID: ISSN 0935-9648
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
42 ENGINEERING; DNA nanoparticle superlattices; azobenzene; colloidal crystals; light-responsive; optical patterning

Citation Formats

Zhu, Jinghan, Lin, Haixin, Kim, Youngeun, Yang, Muwen, Skakuj, Kacper, Du, Jingshan S., Lee, Byeongdu, Schatz, George C., Van Duyne, Richard P., and Mirkin, Chad A. Light-Responsive Colloidal Crystals Engineered with DNA. United States: N. p., 2020. Web. doi:10.1002/adma.201906600.
Zhu, Jinghan, Lin, Haixin, Kim, Youngeun, Yang, Muwen, Skakuj, Kacper, Du, Jingshan S., Lee, Byeongdu, Schatz, George C., Van Duyne, Richard P., & Mirkin, Chad A. Light-Responsive Colloidal Crystals Engineered with DNA. United States. https://doi.org/10.1002/adma.201906600
Zhu, Jinghan, Lin, Haixin, Kim, Youngeun, Yang, Muwen, Skakuj, Kacper, Du, Jingshan S., Lee, Byeongdu, Schatz, George C., Van Duyne, Richard P., and Mirkin, Chad A. Wed . "Light-Responsive Colloidal Crystals Engineered with DNA". United States. https://doi.org/10.1002/adma.201906600. https://www.osti.gov/servlets/purl/1608622.
@article{osti_1608622,
title = {Light-Responsive Colloidal Crystals Engineered with DNA},
author = {Zhu, Jinghan and Lin, Haixin and Kim, Youngeun and Yang, Muwen and Skakuj, Kacper and Du, Jingshan S. and Lee, Byeongdu and Schatz, George C. and Van Duyne, Richard P. and Mirkin, Chad A.},
abstractNote = {A novel method for synthesizing and photopatterning colloidal crystals via light-responsive DNA is developed. These crystals are composed of 10-30 nm gold nanoparticles interconnected with azobenzene-modified DNA strands. The photoisomerization of the azobenzene molecules leads to reversible assembly and disassembly of the base-centered cubic (bcc) and face-centered cubic (fcc) crystalline nanoparticle lattices. In addition, UV light is used as a trigger to selectively remove nanoparticles on centimeter-scale thin films of colloidal crystals, allowing them to be photopatterned into preconceived shapes. The design of the azobenzene-modified linking DNA is critical and involves complementary strands, with azobenzene moieties deliberately staggered between the bases that define the complementary code. This results in a tunable wavelength-dependent melting temperature (Tm) window (4.5-15 degrees C) and one suitable for affecting the desired transformations. In addition to the isomeric state of the azobenzene groups, the size of the particles can be used to modulate the Tm window over which these structures are light-responsive},
doi = {10.1002/adma.201906600},
journal = {Advanced Materials},
number = 8,
volume = 32,
place = {United States},
year = {Wed Jan 15 00:00:00 EST 2020},
month = {Wed Jan 15 00:00:00 EST 2020}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 38 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Controlling Structure and Porosity in Catalytic Nanoparticle Superlattices with DNA
journal, January 2015

  • Auyeung, Evelyn; Morris, William; Mondloch, Joseph E.
  • Journal of the American Chemical Society, Vol. 137, Issue 4
  • DOI: 10.1021/ja512116p

Orthogonal Light-Induced Self-Assembly of Nanoparticles using Differently Substituted Azobenzenes
journal, May 2015

  • Manna, Debasish; Udayabhaskararao, Thumu; Zhao, Hui
  • Angewandte Chemie International Edition, Vol. 54, Issue 42
  • DOI: 10.1002/anie.201502419

Collective Dipolar Interactions in Self-Assembled Magnetic Binary Nanocrystal Superlattice Membranes
journal, December 2010

  • Chen, Jun; Dong, Angang; Cai, Jing
  • Nano Letters, Vol. 10, Issue 12
  • DOI: 10.1021/nl103568q

Reversible trapping and reaction acceleration within dynamically self-assembling nanoflasks
journal, November 2015

  • Zhao, Hui; Sen, Soumyo; Udayabhaskararao, T.
  • Nature Nanotechnology, Vol. 11, Issue 1
  • DOI: 10.1038/nnano.2015.256

Dynamic Tuning of DNA-Nanoparticle Superlattices by Molecular Intercalation of Double Helix
journal, March 2015

  • Pal, Suchetan; Zhang, Yugang; Kumar, Sanat K.
  • Journal of the American Chemical Society, Vol. 137, Issue 12
  • DOI: 10.1021/ja512799d

Light‐Responsive Shape‐Changing Polymers
journal, March 2019

  • Stoychev, Georgi; Kirillova, Alina; Ionov, Leonid
  • Advanced Optical Materials, Vol. 7, Issue 16
  • DOI: 10.1002/adom.201900067

Photothermally-triggered self-assembly of gold nanorods
journal, January 2009

  • Fava, Daniele; Winnik, Mitchell A.; Kumacheva, Eugenia
  • Chemical Communications, Issue 18
  • DOI: 10.1039/b901412h

DNA-Induced Size-Selective Separation of Mixtures of Gold Nanoparticles
journal, July 2006

  • Lee, Jae-Seung; Stoeva, Savka I.; Mirkin, Chad A.
  • Journal of the American Chemical Society, Vol. 128, Issue 27
  • DOI: 10.1021/ja061651j

Ordered Nanostructure Enhances Electrocatalytic Performance by Directional Micro-Electric Field
journal, June 2019

  • Chen, Qing-Xia; Liu, Ying-Huan; Qi, Xiao-Zhuo
  • Journal of the American Chemical Society, Vol. 141, Issue 27
  • DOI: 10.1021/jacs.9b03617

DNA-guided crystallization of colloidal nanoparticles
journal, January 2008

  • Nykypanchuk, Dmytro; Maye, Mathew M.; van der Lelie, Daniel
  • Nature, Vol. 451, Issue 7178, p. 549-552
  • DOI: 10.1038/nature06560

Contraction and Expansion of Stimuli-Responsive DNA Bonds in Flexible Colloidal Crystals
journal, July 2016

  • Mason, Jarad A.; Laramy, Christine R.; Lai, Cheng-Tsung
  • Journal of the American Chemical Society, Vol. 138, Issue 28
  • DOI: 10.1021/jacs.6b05430

Dynamically Self-Assembling Carriers Enable Guiding of Diamagnetic Particles by Weak Magnets
journal, November 2012

  • Chovnik, Olga; Balgley, Renata; Goldman, Joel R.
  • Journal of the American Chemical Society, Vol. 134, Issue 48
  • DOI: 10.1021/ja309633v

Cinnamate-based DNA photolithography
journal, May 2013

  • Feng, Lang; Romulus, Joy; Li, Minfeng
  • Nature Materials, Vol. 12, Issue 8
  • DOI: 10.1038/nmat3645

Resettable, Multi-Readout Logic Gates Based on Controllably Reversible Aggregation of Gold Nanoparticles
journal, March 2011

  • Liu, Dingbin; Chen, Wenwen; Sun, Kang
  • Angewandte Chemie International Edition, Vol. 50, Issue 18
  • DOI: 10.1002/anie.201008198

pH-Responsive Nanoparticle Superlattices with Tunable DNA Bonds
journal, April 2018

  • Zhu, Jinghan; Kim, Youngeun; Lin, Haixin
  • Journal of the American Chemical Society, Vol. 140, Issue 15
  • DOI: 10.1021/jacs.8b02793

Synergism in binary nanocrystal superlattices leads to enhanced p-type conductivity in self-assembled PbTe/Ag2Te thin films
journal, January 2007

  • Urban, Jeffrey J.; Talapin, Dmitri V.; Shevchenko, Elena V.
  • Nature Materials, Vol. 6, Issue 2, p. 115-121
  • DOI: 10.1038/nmat1826

Light-controlled self-assembly of reversible and irreversible nanoparticle suprastructures
journal, June 2007

  • Klajn, R.; Bishop, K. J. M.; Grzybowski, B. A.
  • Proceedings of the National Academy of Sciences, Vol. 104, Issue 25
  • DOI: 10.1073/pnas.0611371104

Spiropyran-Modified Gold Nanoparticles: Reversible Size Control of Aggregates by UV and Visible Light Irradiations
journal, April 2014

  • Shiraishi, Yasuhiro; Shirakawa, Eri; Tanaka, Kazuya
  • ACS Applied Materials & Interfaces, Vol. 6, Issue 10
  • DOI: 10.1021/am5009002

Bottom-up assembly of photonic crystals
journal, January 2013

  • von Freymann, Georg; Kitaev, Vladimir; Lotsch, Bettina V.
  • Chem. Soc. Rev., Vol. 42, Issue 7
  • DOI: 10.1039/C2CS35309A

Self-Assembly at All Scales
journal, March 2002

  • Whitesides, George M.; Grzybowski, Bartosz
  • Science, Vol. 295, Issue 5564, p. 2418-2421
  • DOI: 10.1126/science.1070821

Exchange-coupled nanocomposite magnets by nanoparticle self-assembly
journal, November 2002

  • Zeng, Hao; Li, Jing; Liu, J. P.
  • Nature, Vol. 420, Issue 6914, p. 395-398
  • DOI: 10.1038/nature01208

Spatially and temporally reconfigurable assembly of colloidal crystals
journal, April 2014

  • Kim, Youngri; Shah, Aayush A.; Solomon, Michael J.
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms4676

Design principles for photonic crystals based on plasmonic nanoparticle superlattices
journal, June 2018

  • Sun, Lin; Lin, Haixin; Kohlstedt, Kevin L.
  • Proceedings of the National Academy of Sciences, Vol. 115, Issue 28
  • DOI: 10.1073/pnas.1800106115

A DNA-based method for rationally assembling nanoparticles into macroscopic materials
journal, August 1996

  • Mirkin, Chad A.; Letsinger, Robert L.; Mucic, Robert C.
  • Nature, Vol. 382, Issue 6592, p. 607-609
  • DOI: 10.1038/382607a0

Light-enabled reversible self-assembly and tunable optical properties of stable hairy nanoparticles
journal, January 2018

  • Chen, Yihuang; Wang, Zewei; He, Yanjie
  • Proceedings of the National Academy of Sciences, Vol. 115, Issue 7
  • DOI: 10.1073/pnas.1714748115

Synthesis of azobenzene-tethered DNA for reversible photo-regulation of DNA functions: hybridization and transcription
journal, January 2007

  • Asanuma, Hiroyuki; Liang, Xingguo; Nishioka, Hidenori
  • Nature Protocols, Vol. 2, Issue 1
  • DOI: 10.1038/nprot.2006.465

Bridging functional nanocomposites to robust macroscale devices
journal, June 2019


Light-Driven DNA Nanomachine with a Photoresponsive Molecular Engine
journal, March 2014

  • Kamiya, Yukiko; Asanuma, Hiroyuki
  • Accounts of Chemical Research, Vol. 47, Issue 6
  • DOI: 10.1021/ar400308f

DNA-mediated nanoparticle crystallization into Wulff polyhedra
journal, November 2013

  • Auyeung, Evelyn; Li, Ting I. N. G.; Senesi, Andrew J.
  • Nature, Vol. 505, Issue 7481
  • DOI: 10.1038/nature12739

Arylazopyrazoles as Light-Responsive Molecular Switches in Cyclodextrin-Based Supramolecular Systems
journal, March 2016

  • Stricker, Lucas; Fritz, Eva-Corinna; Peterlechner, Martin
  • Journal of the American Chemical Society, Vol. 138, Issue 13
  • DOI: 10.1021/jacs.6b00484

A light-driven three-dimensional plasmonic nanosystem that translates molecular motion into reversible chiroptical function
journal, February 2016

  • Kuzyk, Anton; Yang, Yangyang; Duan, Xiaoyang
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms10591

Dual-Responsive Nanoparticles and their Self-Assembly
journal, August 2012

  • Das, Sanjib; Ranjan, Priyadarshi; Maiti, Pradipta Sankar
  • Advanced Materials, Vol. 25, Issue 3
  • DOI: 10.1002/adma.201201734

Nanoparticle Superlattice Engineering with DNA
journal, October 2011


Light-controlled self-assembly of non-photoresponsive nanoparticles
journal, July 2015

  • Kundu, Pintu K.; Samanta, Dipak; Leizrowice, Ron
  • Nature Chemistry, Vol. 7, Issue 8
  • DOI: 10.1038/nchem.2303

Directed Self-Assembly of Nanoparticles
journal, June 2010

  • Grzelczak, Marek; Vermant, Jan; Furst, Eric M.
  • ACS Nano, Vol. 4, Issue 7
  • DOI: 10.1021/nn100869j

A new view for nanoparticle assemblies: from crystalline to binary cooperative complementarity
journal, January 2017


Programmable materials and the nature of the DNA bond
journal, February 2015


Hierarchical Materials Design by Pattern Transfer Printing of Self-Assembled Binary Nanocrystal Superlattices
journal, February 2017


Reversible self-assembly of gold nanorods mediated by photoswitchable molecular adsorption
journal, April 2019


Thermoresponsive nanoparticles + plasmonic nanoparticles = photoresponsive heterodimers: facile synthesis and sunlight-induced reversible clustering
journal, January 2013

  • Han, Hui; Lee, Jim Yang; Lu, Xianmao
  • Chemical Communications, Vol. 49, Issue 55
  • DOI: 10.1039/c3cc42273a

DNA-programmable nanoparticle crystallization
journal, January 2008

  • Park, Sung Yong; Lytton-Jean, Abigail K. R.; Lee, Byeongdu
  • Nature, Vol. 451, Issue 7178, p. 553-556
  • DOI: 10.1038/nature06508

Light-Induced Reversible DNA Ligation of Gold Nanoparticle Superlattices
journal, April 2019


Writing Self-Erasing Images using Metastable Nanoparticle “Inks”
journal, September 2009

  • Klajn, Rafal; Wesson, Paul J.; Bishop, Kyle J. M.
  • Angewandte Chemie International Edition, Vol. 48, Issue 38
  • DOI: 10.1002/anie.200901119

Transmutable nanoparticles with reconfigurable surface ligands
journal, February 2016


Controlling the lifetimes of dynamic nanoparticle aggregates by spiropyran functionalization
journal, January 2016

  • Kundu, Pintu K.; Das, Sanjib; Ahrens, Johannes
  • Nanoscale, Vol. 8, Issue 46
  • DOI: 10.1039/C6NR05959G

Light-Induced Reversible Self-Assembly of Gold Nanoparticles Surface-Immobilized with Coumarin Ligands
journal, December 2015

  • He, Huibin; Feng, Miao; Chen, Qidi
  • Angewandte Chemie International Edition, Vol. 55, Issue 3
  • DOI: 10.1002/anie.201508355

Stepwise Evolution of DNA-Programmable Nanoparticle Superlattices
journal, May 2013

  • Senesi, Andrew J.; Eichelsdoerfer, Daniel J.; Macfarlane, Robert J.
  • Angewandte Chemie International Edition, Vol. 52, Issue 26
  • DOI: 10.1002/anie.201301936

Band-like transport, high electron mobility and high photoconductivity in all-inorganic nanocrystal arrays
journal, April 2011

  • Lee, Jong-Soo; Kovalenko, Maksym V.; Huang, Jing
  • Nature Nanotechnology, Vol. 6, Issue 6
  • DOI: 10.1038/nnano.2011.46

Photonic crystals cause active colour change in chameleons
journal, March 2015

  • Teyssier, Jérémie; Saenko, Suzanne V.; van der Marel, Dirk
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms7368

Self-Assembly of Colloidal Nanocrystals: From Intricate Structures to Functional Materials
journal, August 2016


Photoswitchable Dissipative Two-Dimensional Colloidal Crystals
journal, May 2019

  • Vialetto, Jacopo; Anyfantakis, Manos; Rudiuk, Sergii
  • Angewandte Chemie International Edition, Vol. 58, Issue 27
  • DOI: 10.1002/anie.201904093

Photoisomerisation and ligand-controlled reversible aggregation of azobenzene-functionalised gold nanoparticles
journal, January 2014

  • Köhntopp, Anja; Dabrowski, Alexandra; Malicki, Michal
  • Chemical Communications, Vol. 50, Issue 70
  • DOI: 10.1039/C4CC02250E

Spin-Dependent Tunneling in Self-Assembled Cobalt-Nanocrystal Superlattices
journal, November 2000


Photoswitchable Oligonucleotide-Modified Gold Nanoparticles: Controlling Hybridization Stringency with Photon Dose
journal, April 2012

  • Yan, Yunqi; Chen, Jennifer I. L.; Ginger, David S.
  • Nano Letters, Vol. 12, Issue 5
  • DOI: 10.1021/nl300739n

Light-Triggered Reversible Self-Assembly of Gold Nanoparticle Oligomers for Tunable SERS
journal, July 2014

  • Zhang, Lei; Dai, Liwei; Rong, Yun
  • Langmuir, Vol. 31, Issue 3
  • DOI: 10.1021/la504365b

Epitaxy: Programmable Atom Equivalents Versus Atoms
journal, December 2016


Enzymatically Controlled Vacancies in Nanoparticle Crystals
journal, July 2016


Direct-Write Freeform Colloidal Assembly
journal, August 2018

  • Tan, Alvin T. L.; Beroz, Justin; Kolle, Mathias
  • Advanced Materials, Vol. 30, Issue 44
  • DOI: 10.1002/adma.201803620

Orthogonal Light-Induced Self-Assembly of Nanoparticles using Differently Substituted Azobenzenes
journal, May 2015

  • Manna, Debasish; Udayabhaskararao, Thumu; Zhao, Hui
  • Angewandte Chemie, Vol. 127, Issue 42
  • DOI: 10.1002/ange.201502419

Resettable, Multi-Readout Logic Gates Based on Controllably Reversible Aggregation of Gold Nanoparticles
journal, March 2011


Light-Induced Reversible Self-Assembly of Gold Nanoparticles Surface-Immobilized with Coumarin Ligands
journal, December 2015


Exchange-Coupled Nanocomposite Magnets by Nanoparticle Self-Assembly.
journal, February 2003


Stepwise Evolution of DNA-Programmable Nanoparticle Superlattices
journal, May 2013

  • Senesi, Andrew J.; Eichelsdoerfer, Daniel J.; Macfarlane, Robert J.
  • Angewandte Chemie, Vol. 125, Issue 26
  • DOI: 10.1002/ange.201301936

Photoswitchable Dissipative Two‐Dimensional Colloidal Crystals
journal, May 2019

  • Vialetto, Jacopo; Anyfantakis, Manos; Rudiuk, Sergii
  • Angewandte Chemie, Vol. 131, Issue 27
  • DOI: 10.1002/ange.201904093

Writing Self-Erasing Images using Metastable Nanoparticle “Inks”
journal, September 2009

  • Klajn, Rafal; Wesson, Paul J.; Bishop, Kyle J. M.
  • Angewandte Chemie, Vol. 121, Issue 38
  • DOI: 10.1002/ange.200901119