DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A reconstructed discontinuous Galerkin method for compressible flows in Lagrangian formulation

Abstract

In this work, a high-order accurate reconstructed discontinuous Galerkin (rDG) method is developed for solving two-dimensional hydrodynamic problems in cell-centered updated Lagrangian formulation. This method is the Lagrangian limit of the unsplit rDG-ALE formulation, and is obtained by assuming the equality of the grid velocity to the fluid velocity only at cell boundaries. The conservative variables and the Taylor basis defined on the time-dependent moving mesh, provide the piece-wise polynomial expansion in the updated Lagrangian formulation. A multi-directional nodal Riemann solver is implemented for computing the grid velocity at the vertices and the numerical flux at the cell boundaries. A characteristic limiting procedure is extended from the primitive variable version to the conservative variable version, and its performance is compared with the limiter on physical variables. A number of benchmark test cases are conducted to assess the accuracy, robustness, and non-oscillatory property of the DG(P0), DG(P1) and rDG(P1P2) methods. The numerical experiments demonstrate that the developed rDG method is able to attain the designed order of accuracy and the characteristic limiting procedure outperforms the limiter on physical variables in terms of the monotonicity and symmetry preservation for shock problems.

Authors:
 [1]; ORCiD logo [1]; ORCiD logo [2]
  1. North Carolina State Univ., Raleigh, NC (United States)
  2. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Publication Date:
Research Org.:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA), Office of Defense Programs (DP)
OSTI Identifier:
1607918
Report Number(s):
LA-UR-18-23023
Journal ID: ISSN 0045-7930
Grant/Contract Number:  
89233218CNA000001
Resource Type:
Accepted Manuscript
Journal Name:
Computers and Fluids
Additional Journal Information:
Journal Volume: 202; Journal Issue: C; Related Information: This paper is dedicated to the memory of Dr. Douglas Nelson Woods ( ∗January 11 th 1985 - † September 11 th 2019), promising young scientist and post-doctoral research fellow at Los Alamos National Laboratory.; Journal ID: ISSN 0045-7930
Publisher:
Elsevier
Country of Publication:
United States
Language:
English
Subject:
42 ENGINEERING; Lagrangian; Reconstructed discontinuous Galerkin; High-order; Hydrodynamics; Conservative variables; Compressible flows

Citation Formats

Wang, Chuanjin, Luo, Hong, and Shashkov, Mikhail Jurievich. A reconstructed discontinuous Galerkin method for compressible flows in Lagrangian formulation. United States: N. p., 2020. Web. doi:10.1016/j.compfluid.2020.104522.
Wang, Chuanjin, Luo, Hong, & Shashkov, Mikhail Jurievich. A reconstructed discontinuous Galerkin method for compressible flows in Lagrangian formulation. United States. https://doi.org/10.1016/j.compfluid.2020.104522
Wang, Chuanjin, Luo, Hong, and Shashkov, Mikhail Jurievich. Thu . "A reconstructed discontinuous Galerkin method for compressible flows in Lagrangian formulation". United States. https://doi.org/10.1016/j.compfluid.2020.104522. https://www.osti.gov/servlets/purl/1607918.
@article{osti_1607918,
title = {A reconstructed discontinuous Galerkin method for compressible flows in Lagrangian formulation},
author = {Wang, Chuanjin and Luo, Hong and Shashkov, Mikhail Jurievich},
abstractNote = {In this work, a high-order accurate reconstructed discontinuous Galerkin (rDG) method is developed for solving two-dimensional hydrodynamic problems in cell-centered updated Lagrangian formulation. This method is the Lagrangian limit of the unsplit rDG-ALE formulation, and is obtained by assuming the equality of the grid velocity to the fluid velocity only at cell boundaries. The conservative variables and the Taylor basis defined on the time-dependent moving mesh, provide the piece-wise polynomial expansion in the updated Lagrangian formulation. A multi-directional nodal Riemann solver is implemented for computing the grid velocity at the vertices and the numerical flux at the cell boundaries. A characteristic limiting procedure is extended from the primitive variable version to the conservative variable version, and its performance is compared with the limiter on physical variables. A number of benchmark test cases are conducted to assess the accuracy, robustness, and non-oscillatory property of the DG(P0), DG(P1) and rDG(P1P2) methods. The numerical experiments demonstrate that the developed rDG method is able to attain the designed order of accuracy and the characteristic limiting procedure outperforms the limiter on physical variables in terms of the monotonicity and symmetry preservation for shock problems.},
doi = {10.1016/j.compfluid.2020.104522},
journal = {Computers and Fluids},
number = C,
volume = 202,
place = {United States},
year = {Thu Mar 19 00:00:00 EDT 2020},
month = {Thu Mar 19 00:00:00 EDT 2020}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 7 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Operator splitting and time accuracy in Lagrange plus remap solution methods
journal, November 2013


A Method for the Numerical Calculation of Hydrodynamic Shocks
journal, March 1950

  • VonNeumann, J.; Richtmyer, R. D.
  • Journal of Applied Physics, Vol. 21, Issue 3
  • DOI: 10.1063/1.1699639

The Construction of Compatible Hydrodynamics Algorithms Utilizing Conservation of Total Energy
journal, October 1998

  • Caramana, E. J.; Burton, D. E.; Shashkov, M. J.
  • Journal of Computational Physics, Vol. 146, Issue 1
  • DOI: 10.1006/jcph.1998.6029

Formulations of Artificial Viscosity for Multi-dimensional Shock Wave Computations
journal, July 1998

  • Caramana, E. J.; Shashkov, M. J.; Whalen, P. P.
  • Journal of Computational Physics, Vol. 144, Issue 1
  • DOI: 10.1006/jcph.1998.5989

A Tensor Artificial Viscosity Using a Mimetic Finite Difference Algorithm
journal, September 2001

  • Campbell, J. C.; Shashkov, M. J.
  • Journal of Computational Physics, Vol. 172, Issue 2
  • DOI: 10.1006/jcph.2001.6856

A framework for developing a mimetic tensor artificial viscosity for Lagrangian hydrocodes on arbitrary polygonal meshes
journal, October 2010


Vorticity errors in multidimensional lagrangian codes
journal, March 1992


A high order ENO conservative Lagrangian type scheme for the compressible Euler equations
journal, December 2007


Evolution Galerkin methods for hyperbolic systems in two space dimensions
journal, February 2000


Finite Volume Evolution Galerkin Methods for Nonlinear Hyperbolic Systems
journal, December 2002

  • Lukáčová-Medvid'ová, M.; Saibertová, J.; Warnecke, G.
  • Journal of Computational Physics, Vol. 183, Issue 2
  • DOI: 10.1006/jcph.2002.7207

Well-balanced finite volume evolution Galerkin methods for the shallow water equations
journal, January 2007

  • Lukáčová-Medvid’ová, M.; Noelle, S.; Kraft, M.
  • Journal of Computational Physics, Vol. 221, Issue 1
  • DOI: 10.1016/j.jcp.2006.06.015

Finite volume evolution Galerkin method for hyperbolic conservation laws with spatially varying flux functions
journal, February 2009

  • Arun, K. R.; Kraft, M.; Lukáčová-Medvid’ová, M.
  • Journal of Computational Physics, Vol. 228, Issue 2
  • DOI: 10.1016/j.jcp.2008.10.004

Large Time Step Finite Volume Evolution Galerkin Methods
journal, December 2010

  • Hundertmark-Zaušková, A.; Lukáčová-Medvid’ová, M.; Prill, F.
  • Journal of Scientific Computing, Vol. 48, Issue 1-3
  • DOI: 10.1007/s10915-010-9443-5

Finite volume local evolution Galerkin method for two-dimensional relativistic hydrodynamics
journal, January 2014


The finite volume local evolution Galerkin method for solving the hyperbolic conservation laws
journal, July 2009


Lagrangian Gas Dynamics in Two Dimensions and Lagrangian systems
journal, October 2005

  • Després, Bruno; Mazeran, Constant
  • Archive for Rational Mechanics and Analysis, Vol. 178, Issue 3
  • DOI: 10.1007/s00205-005-0375-4

A Cell-Centered Lagrangian Scheme for Two-Dimensional Compressible Flow Problems
journal, January 2007

  • Maire, Pierre-Henri; Abgrall, Rémi; Breil, Jérôme
  • SIAM Journal on Scientific Computing, Vol. 29, Issue 4
  • DOI: 10.1137/050633019

A cell-centered Lagrangian Godunov-like method for solid dynamics
journal, August 2013


A unified framework for the construction of one-step finite volume and discontinuous Galerkin schemes on unstructured meshes
journal, September 2008

  • Dumbser, Michael; Balsara, Dinshaw S.; Toro, Eleuterio F.
  • Journal of Computational Physics, Vol. 227, Issue 18
  • DOI: 10.1016/j.jcp.2008.05.025

Very high order PNPM schemes on unstructured meshes for the resistive relativistic MHD equations
journal, October 2009


A reconstructed discontinuous Galerkin method for the compressible Navier–Stokes equations on arbitrary grids
journal, September 2010

  • Luo, Hong; Luo, Luqing; Nourgaliev, Robert
  • Journal of Computational Physics, Vol. 229, Issue 19
  • DOI: 10.1016/j.jcp.2010.05.033

An implicit Hermite WENO reconstruction-based discontinuous Galerkin method on tetrahedral grids
journal, June 2014


A hybrid reconstructed discontinuous Galerkin method for compressible flows on arbitrary grids
journal, November 2016


Application of nonlinear Krylov acceleration to a reconstructed discontinuous Galerkin method for compressible flows
journal, February 2018


A Lagrangian Discontinuous Galerkin-type method on unstructured meshes to solve hydrodynamics problems
journal, February 2004

  • Loubère, R.; Ovadia, J.; Abgrall, R.
  • International Journal for Numerical Methods in Fluids, Vol. 44, Issue 6
  • DOI: 10.1002/fld.665

A new high-order discontinuous Galerkin spectral finite element method for Lagrangian gas dynamics in two-dimensions
journal, April 2011


A discontinuous Galerkin discretization for solving the two-dimensional gas dynamics equations written under total Lagrangian formulation on general unstructured grids
journal, November 2014

  • Vilar, François; Maire, Pierre-Henri; Abgrall, Rémi
  • Journal of Computational Physics, Vol. 276
  • DOI: 10.1016/j.jcp.2014.07.030

A Lagrangian discontinuous Galerkin hydrodynamic method
journal, February 2018


Lagrangian discontinuous Galerkin hydrodynamic methods in axisymmetric coordinates
journal, November 2018

  • Liu, Xiaodong; Morgan, Nathaniel R.; Burton, Donald E.
  • Journal of Computational Physics, Vol. 373
  • DOI: 10.1016/j.jcp.2018.06.073

A high-order Lagrangian discontinuous Galerkin hydrodynamic method for quadratic cells using a subcell mesh stabilization scheme
journal, June 2019

  • Liu, Xiaodong; Morgan, Nathaniel R.; Burton, Donald E.
  • Journal of Computational Physics, Vol. 386
  • DOI: 10.1016/j.jcp.2019.02.008

On the computation of multi-material flows using ALE formulation
journal, February 2004

  • Luo, Hong; Baum, Joseph D.; Löhner, Rainald
  • Journal of Computational Physics, Vol. 194, Issue 1
  • DOI: 10.1016/j.jcp.2003.09.026

A point-centered arbitrary Lagrangian Eulerian hydrodynamic approach for tetrahedral meshes
journal, June 2015

  • Morgan, Nathaniel R.; Waltz, Jacob I.; Burton, Donald E.
  • Journal of Computational Physics, Vol. 290
  • DOI: 10.1016/j.jcp.2015.02.024

An approach for treating contact surfaces in Lagrangian cell-centered hydrodynamics
journal, October 2013

  • Morgan, Nathaniel R.; Kenamond, Mark A.; Burton, Donald E.
  • Journal of Computational Physics, Vol. 250
  • DOI: 10.1016/j.jcp.2013.05.015

Reduction of dissipation in Lagrange cell-centered hydrodynamics (CCH) through corner gradient reconstruction (CGR)
journal, October 2015


A vertex-based hierarchical slope limiter for <mml:math altimg="si27.gif" display="inline" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd"><mml:mi>p</mml:mi></mml:math>-adaptive discontinuous Galerkin methods
journal, April 2010


Good Neighborhoods for Multidimensional Van Leer Limiting
journal, September 1999


A Godunov-like point-centered essentially Lagrangian hydrodynamic approach
journal, January 2015

  • Morgan, Nathaniel R.; Waltz, Jacob I.; Burton, Donald E.
  • Journal of Computational Physics, Vol. 281
  • DOI: 10.1016/j.jcp.2014.10.048

A Lagrangian staggered grid Godunov-like approach for hydrodynamics
journal, February 2014

  • Morgan, Nathaniel R.; Lipnikov, Konstantin N.; Burton, Donald E.
  • Journal of Computational Physics, Vol. 259
  • DOI: 10.1016/j.jcp.2013.12.013

TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: One-dimensional systems
journal, September 1989


The Runge–Kutta Discontinuous Galerkin Method for Conservation Laws V
journal, April 1998

  • Cockburn, Bernardo; Shu, Chi-Wang
  • Journal of Computational Physics, Vol. 141, Issue 2
  • DOI: 10.1006/jcph.1998.5892

Positivity-preserving Lagrangian scheme for multi-material compressible flow
journal, January 2014


Positivity-preserving cell-centered Lagrangian schemes for multi-material compressible flows: From first-order to high-orders. Part I: The one-dimensional case
journal, May 2016

  • Vilar, François; Shu, Chi-Wang; Maire, Pierre-Henri
  • Journal of Computational Physics, Vol. 312
  • DOI: 10.1016/j.jcp.2016.02.027

High-Order Curvilinear Finite Element Methods for Lagrangian Hydrodynamics
journal, January 2012

  • Dobrev, Veselin A.; Kolev, Tzanio V.; Rieben, Robert N.
  • SIAM Journal on Scientific Computing, Vol. 34, Issue 5
  • DOI: 10.1137/120864672

A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws
journal, April 1978


Errors for calculations of strong shocks using an artificial viscosity and an artificial heat flux
journal, September 1987