DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Plasmonic Landau damping in active environments

Abstract

Optical manipulation of charge on the nanoscale is of fundamental importance to an array of proposed technologies from selective photocatalysis to nanophotonics. Open plasmonic systems where collective electron oscillations release energy and charge to their environments offer a potential means to this end as plasmons can rapidly decay into energetic electron-hole pairs; however, isolating this decay from other plasmon-environment interactions remains a challenge. Here we introduce an analytic theory of noble-metal nanoparticles that quantitatively models plasmon decay into electron-hole pairs, demonstrates that this decay depends significantly on the nanoparticle's dielectric environment, and disentangles this effect from competing decay pathways. Using our method to incorporate embedding material and substrate effects on plasmon-electron interaction, we show that predictions from the model agree with four separate experiments. Finally, examination of coupled nanoparticle-emitter systems further shows that the hybridized in-phase mode more efficiently decays to photons whereas the out-of-phase mode more efficiently decays to electron-hole pairs, offering a strategy to tailor open plasmonic systems for charge manipulation.

Authors:
 [1];  [1];  [1];  [1]
  1. Univ. of Washington, Seattle, WA (United States)
Publication Date:
Research Org.:
Univ. of Washington, Seattle, WA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); National Science Foundation (NSF)
OSTI Identifier:
1597445
Alternate Identifier(s):
OSTI ID: 1425530; OSTI ID: 1907182
Grant/Contract Number:  
SC0018040; DGE-1256082; CHE-1664684
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review B
Additional Journal Information:
Journal Volume: 97; Journal Issue: 12; Journal ID: ISSN 2469-9950
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; electronic structure; plasmons; quasiparticles & collective excitations; nanoparticles

Citation Formats

Thakkar, Niket, Montoni, Nicholas P., Cherqui, Charles, and Masiello, David J. Plasmonic Landau damping in active environments. United States: N. p., 2018. Web. doi:10.1103/PhysRevB.97.121403.
Thakkar, Niket, Montoni, Nicholas P., Cherqui, Charles, & Masiello, David J. Plasmonic Landau damping in active environments. United States. https://doi.org/10.1103/PhysRevB.97.121403
Thakkar, Niket, Montoni, Nicholas P., Cherqui, Charles, and Masiello, David J. Mon . "Plasmonic Landau damping in active environments". United States. https://doi.org/10.1103/PhysRevB.97.121403. https://www.osti.gov/servlets/purl/1597445.
@article{osti_1597445,
title = {Plasmonic Landau damping in active environments},
author = {Thakkar, Niket and Montoni, Nicholas P. and Cherqui, Charles and Masiello, David J.},
abstractNote = {Optical manipulation of charge on the nanoscale is of fundamental importance to an array of proposed technologies from selective photocatalysis to nanophotonics. Open plasmonic systems where collective electron oscillations release energy and charge to their environments offer a potential means to this end as plasmons can rapidly decay into energetic electron-hole pairs; however, isolating this decay from other plasmon-environment interactions remains a challenge. Here we introduce an analytic theory of noble-metal nanoparticles that quantitatively models plasmon decay into electron-hole pairs, demonstrates that this decay depends significantly on the nanoparticle's dielectric environment, and disentangles this effect from competing decay pathways. Using our method to incorporate embedding material and substrate effects on plasmon-electron interaction, we show that predictions from the model agree with four separate experiments. Finally, examination of coupled nanoparticle-emitter systems further shows that the hybridized in-phase mode more efficiently decays to photons whereas the out-of-phase mode more efficiently decays to electron-hole pairs, offering a strategy to tailor open plasmonic systems for charge manipulation.},
doi = {10.1103/PhysRevB.97.121403},
journal = {Physical Review B},
number = 12,
volume = 97,
place = {United States},
year = {Mon Mar 12 00:00:00 EDT 2018},
month = {Mon Mar 12 00:00:00 EDT 2018}
}

Journal Article:

Citation Metrics:
Cited by: 8 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Resonance shifts and spill-out effects in self-consistent hydrodynamic nanoplasmonics
journal, May 2015

  • Toscano, Giuseppe; Straubel, Jakob; Kwiatkowski, Alexander
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms8132

Role of occupied d bands in the dynamics of excited electrons and holes in Ag
journal, July 2003


The optical absorption spectra of small Silver clusters (n=8?39) embedded in rare gas matrices
journal, March 1993

  • Harbich, W.; Fedrigo, S.; Buttet, J.
  • Zeitschrift f�r Physik D Atoms, Molecules and Clusters, Vol. 26, Issue 1-4
  • DOI: 10.1007/BF01429124

Blue shift of the Mie plasma frequency in Ag clusters and particles
journal, September 1993

  • Tiggesbäumker, Josef; Köller, Lars; Meiwes-Broer, Karl-Heinz
  • Physical Review A, Vol. 48, Issue 3
  • DOI: 10.1103/PhysRevA.48.R1749

Resonance Absorption by Nuclear Magnetic Moments in a Solid
journal, January 1946

  • Purcell, E. M.; Torrey, H. C.; Pound, R. V.
  • Physical Review, Vol. 69, Issue 1-2, p. 37-38
  • DOI: 10.1103/PhysRev.69.37

Surface plasmon subwavelength optics
journal, August 2003

  • Barnes, William L.; Dereux, Alain; Ebbesen, Thomas W.
  • Nature, Vol. 424, Issue 6950, p. 824-830
  • DOI: 10.1038/nature01937

The Surface Plasmon Resonance of Free and Embedded Ag-Clusters in the Size Range 1,5 nm < D < 30 nm
journal, October 1998


Using the Plasmon Linewidth To Calculate the Time and Efficiency of Electron Transfer between Gold Nanorods and Graphene
journal, November 2013

  • Hoggard, Anneli; Wang, Lin-Yung; Ma, Lulu
  • ACS Nano, Vol. 7, Issue 12
  • DOI: 10.1021/nn404985h

Theoretical predictions for hot-carrier generation from surface plasmon decay
journal, December 2014

  • Sundararaman, Ravishankar; Narang, Prineha; Jermyn, Adam S.
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms6788

Decay of dark and bright plasmonic modes in a metallic nanoparticle dimer
journal, January 2015

  • Brandstetter-Kunc, Adam; Weick, Guillaume; Weinmann, Dietmar
  • Physical Review B, Vol. 91, Issue 3
  • DOI: 10.1103/PhysRevB.91.035431

Efficient hot-electron transfer by a plasmon-induced interfacial charge-transfer transition
journal, August 2015


Landau damping and wall dissipation in large metal clusters
journal, July 1992


Spatially Mapping Energy Transfer from Single Plasmonic Particles to Semiconductor Substrates via STEM/EELS
journal, April 2015


A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation
journal, July 2008

  • Oulton, R. F.; Sorger, V. J.; Genov, D. A.
  • Nature Photonics, Vol. 2, Issue 8, p. 496-500
  • DOI: 10.1038/nphoton.2008.131

Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen
journal, January 1908


Nanoscale Control of Optical Heating in Complex Plasmonic Systems
journal, January 2010

  • Baffou, Guillaume; Quidant, Romain; García de Abajo, F. Javier
  • ACS Nano, Vol. 4, Issue 2
  • DOI: 10.1021/nn901144d

Size Evolution of the Surface Plasmon Resonance Damping in Silver Nanoparticles: Confinement and Dielectric Effects
journal, June 2011

  • Lermé, Jean
  • The Journal of Physical Chemistry C, Vol. 115, Issue 29
  • DOI: 10.1021/jp203481m

From Discrete Electronic States to Plasmons: TDDFT Optical Absorption Properties of Ag n ( n = 10, 20, 35, 56, 84, 120) Tetrahedral Clusters
journal, July 2008

  • Aikens, Christine M.; Li, Shuzhou; Schatz, George C.
  • The Journal of Physical Chemistry C, Vol. 112, Issue 30
  • DOI: 10.1021/jp802707r

Quantum plasmon resonances of individual metallic nanoparticles
journal, March 2012

  • Scholl, Jonathan A.; Koh, Ai Leen; Dionne, Jennifer A.
  • Nature, Vol. 483, Issue 7390
  • DOI: 10.1038/nature10904

Quantum Beats from Entangled Localized Surface Plasmons
journal, January 2015

  • Thakkar, Niket; Cherqui, Charles; Masiello, David J.
  • ACS Photonics, Vol. 2, Issue 1
  • DOI: 10.1021/ph500387c

Polarization-Dependent Scanning Photoionization Microscopy: Ultrafast Plasmon-Mediated Electron Ejection Dynamics in Single Au Nanorods
journal, April 2011

  • Schweikhard, Volker; Grubisic, Andrej; Baker, Thomas A.
  • ACS Nano, Vol. 5, Issue 5
  • DOI: 10.1021/nn200082j

Thermo-plasmonics: using metallic nanostructures as nano-sources of heat: Thermoplasmonics
journal, April 2012


Competition between surface screening and size quantization for surface plasmons in nanoparticles
journal, August 2013


Optical response of small silver clusters
journal, November 1999


Plasmon resonance broadening in small metal particles
journal, December 1983

  • Kraus, W. A.; Schatz, George C.
  • The Journal of Chemical Physics, Vol. 79, Issue 12
  • DOI: 10.1063/1.445794

On-chip molecular electronic plasmon sources based on self-assembled monolayer tunnel junctions
journal, March 2016


Optical Constants of the Noble Metals
journal, December 1972


Plasmon-induced hot carrier science and technology
journal, January 2015

  • Brongersma, Mark L.; Halas, Naomi J.; Nordlander, Peter
  • Nature Nanotechnology, Vol. 10, Issue 1
  • DOI: 10.1038/nnano.2014.311

Electronic Properties of Fine Metallic Particles. II. Plasma Resonance Absorption
journal, September 1966

  • Kawabata, Arisato; Kubo, Ryogo
  • Journal of the Physical Society of Japan, Vol. 21, Issue 9
  • DOI: 10.1143/JPSJ.21.1765

Atomistic electrodynamics simulations of bare and ligand-coated nanoparticles in the quantum size regime
journal, November 2015

  • Chen, Xing; Moore, Justin E.; Zekarias, Meserret
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms9921

Optical absorption of small metallic particles
journal, June 1985


Surface-Enhanced Raman Spectroscopy
journal, September 2005

  • Haynes, Christy L.; McFarland, Adam D.; Van Duyne, Richard P.
  • Analytical Chemistry, Vol. 77, Issue 17
  • DOI: 10.1021/ac053456d

Lifetime of the first and second collective excitations in metallic nanoparticles
journal, September 2005


Looking from both sides
journal, February 2013


Efficient trapping of silver cations in a rare gas matrix: Ag3+ in argon
journal, May 2007

  • Lecoultre, Sylvain; Rydlo, Alexandre; Félix, Christian
  • The Journal of Chemical Physics, Vol. 126, Issue 20
  • DOI: 10.1063/1.2741547

Models of membrane electrostatics
journal, May 2012


Density-functional studies of plasmons in small metal clusters
journal, May 2009

  • Lian, Ke-Yan; Sałek, Paweł; Jin, Mingxing
  • The Journal of Chemical Physics, Vol. 130, Issue 17
  • DOI: 10.1063/1.3119310

3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination
journal, April 2016


Unidirectional Emission of a Quantum Dot Coupled to a Nanoantenna
journal, August 2010


Quantum Plasmon Resonances Controlled by Molecular Tunnel Junctions
journal, March 2014


Theory and computation of hot carriers generated by surface plasmon polaritons in noble metals
journal, June 2015

  • Bernardi, Marco; Mustafa, Jamal; Neaton, Jeffrey B.
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms8044

Ab initio study of the absorption spectra of Ag[sub n] (n=5–8) clusters
journal, January 2001

  • Bonačić-Koutecky, Vlasta; Veyret, Vincent; Mitrić, Roland
  • The Journal of Chemical Physics, Vol. 115, Issue 22
  • DOI: 10.1063/1.1415077

A Hybridization Model for the Plasmon Response of Complex Nanostructures
journal, October 2003


Characterizing Localized Surface Plasmons Using Electron Energy-Loss Spectroscopy
journal, May 2016


Theory of inelastic lifetimes of low-energy electrons in metals
journal, January 2000


Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy
journal, November 2011

  • Linic, Suljo; Christopher, Phillip; Ingram, David B.
  • Nature Materials, Vol. 10, Issue 12
  • DOI: 10.1038/nmat3151

Works referencing / citing this record:

Single-Particle Spectroscopy of Supported Silver Clusters on Silicon: Substrate Effects on Localized Surface Plasmons
journal, April 2019


Optical field tuning of localized plasmon modes in Ag microcrystals at the nanofemto scale
journal, February 2020

  • Dai, Yanan; Dąbrowski, Maciej; Petek, Hrvoje
  • The Journal of Chemical Physics, Vol. 152, Issue 5
  • DOI: 10.1063/1.5139543