DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Antiferromagnetic-ferromagnetic phase domain development in nanopatterned FeRh islands

Abstract

The antiferromagnetic-to-ferromagnetic phase transition in B2-ordered FeRh is imaged in laterally confined nanopatterned islands using photoemission electron microscopy with x-ray magnetic circular dichroism contrast. The resulting magnetic images directly detail the progression in the shape and size of the FM phase domains during heating and cooling through the transition. In 5-μm-square islands this domain development during heating is shown to proceed in three distinct modes - nucleation, growth, and merging - each with subsequently greater energy costs. In 0.5-μm islands, which are smaller than the typical final domain size, the growth mode is stunted and the transition temperature is found to be reduced by 20 K. The modification to the transition temperature is found by high-resolution scanning transmission electron microscopy to be due to a 100-nm chemically disordered edge grain present as a result of ion implantation damage during the patterning. FeRh has unique possibilities for magnetic memory applications; the inevitable changes to its magnetic properties due to subtractive nanofabrication will need to be addressed in future work in order to progress from sheet films to suitable patterned devices.

Authors:
 [1];  [2];  [1];  [2];  [2];  [1];  [3]; ;  [2];  [2];  [1];  [1]
  1. Univ. of Leeds, Leeds (United Kingdom)
  2. Univ. of Glasgow, Scotland (United Kingdom)
  3. Harwell Science and Innovation Campus, Didcot (United Kingdom)
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1582327
Grant/Contract Number:  
AC02-05CH11231; EP-M018504-1; EP-M019020-1
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review Materials
Additional Journal Information:
Journal Volume: 2; Journal Issue: 10; Journal ID: ISSN 2475-9953
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; Domains; Magnetic phase transitions; Physical Systems; Nanostructures; Techniques; Scanning transmission electron microscopy; X-ray photoemission electron microscopy

Citation Formats

Temple, R. C., Almeida, T. P., Massey, J. R., Fallon, K., Lamb, R., Morley, S. A., Maccherozzi, F., Dhesi, S. S., McGrouther, D., McVitie, S., Moore, T. A., and Marrows, C. H. Antiferromagnetic-ferromagnetic phase domain development in nanopatterned FeRh islands. United States: N. p., 2018. Web. doi:10.1103/physrevmaterials.2.104406.
Temple, R. C., Almeida, T. P., Massey, J. R., Fallon, K., Lamb, R., Morley, S. A., Maccherozzi, F., Dhesi, S. S., McGrouther, D., McVitie, S., Moore, T. A., & Marrows, C. H. Antiferromagnetic-ferromagnetic phase domain development in nanopatterned FeRh islands. United States. https://doi.org/10.1103/physrevmaterials.2.104406
Temple, R. C., Almeida, T. P., Massey, J. R., Fallon, K., Lamb, R., Morley, S. A., Maccherozzi, F., Dhesi, S. S., McGrouther, D., McVitie, S., Moore, T. A., and Marrows, C. H. Mon . "Antiferromagnetic-ferromagnetic phase domain development in nanopatterned FeRh islands". United States. https://doi.org/10.1103/physrevmaterials.2.104406. https://www.osti.gov/servlets/purl/1582327.
@article{osti_1582327,
title = {Antiferromagnetic-ferromagnetic phase domain development in nanopatterned FeRh islands},
author = {Temple, R. C. and Almeida, T. P. and Massey, J. R. and Fallon, K. and Lamb, R. and Morley, S. A. and Maccherozzi, F. and Dhesi, S. S. and McGrouther, D. and McVitie, S. and Moore, T. A. and Marrows, C. H.},
abstractNote = {The antiferromagnetic-to-ferromagnetic phase transition in B2-ordered FeRh is imaged in laterally confined nanopatterned islands using photoemission electron microscopy with x-ray magnetic circular dichroism contrast. The resulting magnetic images directly detail the progression in the shape and size of the FM phase domains during heating and cooling through the transition. In 5-μm-square islands this domain development during heating is shown to proceed in three distinct modes - nucleation, growth, and merging - each with subsequently greater energy costs. In 0.5-μm islands, which are smaller than the typical final domain size, the growth mode is stunted and the transition temperature is found to be reduced by 20 K. The modification to the transition temperature is found by high-resolution scanning transmission electron microscopy to be due to a 100-nm chemically disordered edge grain present as a result of ion implantation damage during the patterning. FeRh has unique possibilities for magnetic memory applications; the inevitable changes to its magnetic properties due to subtractive nanofabrication will need to be addressed in future work in order to progress from sheet films to suitable patterned devices.},
doi = {10.1103/physrevmaterials.2.104406},
journal = {Physical Review Materials},
number = 10,
volume = 2,
place = {United States},
year = {Mon Oct 01 00:00:00 EDT 2018},
month = {Mon Oct 01 00:00:00 EDT 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 13 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Temperature and field hysteresis of the antiferromagnetic-to-ferromagnetic phase transition in epitaxial FeRh films
journal, December 2005


Ferromagnetism at the interfaces of antiferromagnetic FeRh epilayers
journal, November 2010


Ion-beam-induced texture formation in vacuum-condensed thin metal films
journal, June 1982


FeRh/FePt exchange spring films for thermally assisted magnetic recording media
journal, April 2003

  • Thiele, Jan-Ulrich; Maat, Stefan; Fullerton, Eric E.
  • Applied Physics Letters, Vol. 82, Issue 17
  • DOI: 10.1063/1.1571232

Temperature-driven nucleation of ferromagnetic domains in FeRh thin films
journal, June 2012

  • Baldasseroni, C.; Bordel, C.; Gray, A. X.
  • Applied Physics Letters, Vol. 100, Issue 26
  • DOI: 10.1063/1.4730957

Dataset associated with ‘Antiferromagnetic-ferromagnetic phase domain development in nanopatterned FeRh islands’
dataset, January 2018

  • Temple, Rowan C.; Almeida, Trevor P.; Massey, Jamie R.
  • University of Leeds
  • DOI: 10.5518/453

Effect of strain and thickness on the transition temperature of epitaxial FeRh thin-films
journal, October 2017

  • Ceballos, A.; Chen, Zhanghui; Schneider, O.
  • Applied Physics Letters, Vol. 111, Issue 17
  • DOI: 10.1063/1.4997901

Inhomogeneous spatial distribution of the magnetic transition in an iron-rhodium thin film
journal, June 2017

  • Gatel, C.; Warot-Fonrose, B.; Biziere, N.
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms15703

Anomalous Magnetic Films
journal, October 1962

  • Cohen, Mitchell S.
  • Journal of Applied Physics, Vol. 33, Issue 10
  • DOI: 10.1063/1.1728545

Magnetization reversal and confinement effects across the metamagnetic phase transition in mesoscale FeRh structures
journal, February 2018

  • Arregi, Jon Ander; Horký, Michal; Fabianová, Kateřina
  • Journal of Physics D: Applied Physics, Vol. 51, Issue 10
  • DOI: 10.1088/1361-6463/aaaa5a

Strain relaxation in nanopatterned strained silicon round pillars
journal, January 2007

  • Himcinschi, C.; Singh, R.; Radu, I.
  • Applied Physics Letters, Vol. 90, Issue 2
  • DOI: 10.1063/1.2431476

Observation of a temperature dependent asymmetry in the domain structure of a Pd-doped FeRh epilayer
journal, November 2014


Effect of capping material on interfacial ferromagnetism in FeRh thin films
journal, January 2014

  • Baldasseroni, C.; Pálsson, G. K.; Bordel, C.
  • Journal of Applied Physics, Vol. 115, Issue 4
  • DOI: 10.1063/1.4862961

Quantitative TEM imaging of the magnetostructural and phase transitions in FeRh thin film systems
journal, December 2017


Modulating the phase transition temperature of giant magnetocaloric thin films by ion irradiation
journal, November 2017


Hall-effect characterization of the metamagnetic transition in FeRh
journal, January 2013


Room-temperature antiferromagnetic memory resistor
journal, January 2014

  • Marti, X.; Fina, I.; Frontera, C.
  • Nature Materials, Vol. 13, Issue 4
  • DOI: 10.1038/nmat3861

Colossal magnetic phase transition asymmetry in mesoscale FeRh stripes
journal, October 2016

  • Uhlíř, V.; Arregi, J. A.; Fullerton, E. E.
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms13113

Predicting magnetostructural trends in FeRh-based ternary systems
journal, September 2013

  • Barua, Radhika; Jiménez-Villacorta, Félix; Lewis, L. H.
  • Applied Physics Letters, Vol. 103, Issue 10
  • DOI: 10.1063/1.4820583

Reversal mechanisms in perpendicularly magnetized nanostructures
journal, July 2008


Sequential write-read operations in FeRh antiferromagnetic memory
journal, September 2015

  • Moriyama, Takahiro; Matsuzaki, Noriko; Kim, Kab-Jin
  • Applied Physics Letters, Vol. 107, Issue 12
  • DOI: 10.1063/1.4931567

Surface influenced magnetostructural transition in FeRh films
journal, November 2009

  • Kim, J. W.; Ryan, P. J.; Ding, Y.
  • Applied Physics Letters, Vol. 95, Issue 22
  • DOI: 10.1063/1.3265921

Coupled magnetic, structural, and electronic phase transitions in FeRh
journal, July 2016


Full Electroresistance Modulation in a Mixed-Phase Metallic Alloy
journal, March 2016


Temperature controlled motion of an antiferromagnet- ferromagnet interface within a dopant-graded FeRh epilayer
journal, April 2015

  • Le Graët, C.; Charlton, T. R.; McLaren, M.
  • APL Materials, Vol. 3, Issue 4
  • DOI: 10.1063/1.4907282

Sputter Growth and Characterization of Metamagnetic B2-ordered FeRh Epilayers
journal, January 2013

  • Le Graët, Chantal; de Vries, Mark A.; McLaren, Mathew
  • Journal of Visualized Experiments, Issue 80
  • DOI: 10.3791/50603

Stable room-temperature ferromagnetic phase at the FeRh(100) surface
journal, March 2016

  • Pressacco, Federico; Uhlίř, Vojtěch; Gatti, Matteo
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep22383

Temperature-driven growth of antiferromagnetic domains in thin-film FeRh
journal, June 2015


Electric-field control of magnetic order above room temperature
journal, January 2014

  • Cherifi, R. O.; Ivanovskaya, V.; Phillips, L. C.
  • Nature Materials, Vol. 13, Issue 4
  • DOI: 10.1038/nmat3870

Barkhausen-like antiferromagnetic to ferromagnetic phase transition driven by spin polarized current
journal, August 2015

  • Suzuki, Ippei; Naito, Tomoyuki; Itoh, Mitsuru
  • Applied Physics Letters, Vol. 107, Issue 8
  • DOI: 10.1063/1.4929695

4D STEM data set supporting “Antiferromagnetic-ferromagnetic phase domain development in nanopatterned FeRh islands”
dataset, January 2018


Substrate Induced Strain Field in FeRh Epilayers Grown on Single Crystal MgO (001) Substrates
journal, April 2017

  • Barton, C. W.; Ostler, T. A.; Huskisson, D.
  • Scientific Reports, Vol. 7, Issue 1
  • DOI: 10.1038/srep44397

Stable room-temperature ferromagnetic phase at the FeRh(100) surface
preprint, January 2015


Colossal magnetic phase transition asymmetry in mesoscale FeRh stripes
text, January 2016


Full Electroresistance Modulation in a Mixed-Phase Metallic Alloy
text, January 2017


Works referencing / citing this record:

Phase boundary exchange coupling in the mixed magnetic phase regime of a Pd-doped FeRh epilayer
journal, February 2020


Spectral reflectivity crossover at the metamagnetic transition in FeRh thin films
journal, January 2019

  • Bennett, S. P.; Currie, M.; van ’t Erve, O. M. J.
  • Optical Materials Express, Vol. 9, Issue 7
  • DOI: 10.1364/ome.9.002870