DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Molecular Photoelectrode for Water Oxidation Inspired by Photosystem II

Abstract

In artificial photosynthesis, the sun drives water splitting into H2 and O2 or converts CO2 into a useful form of carbon. In most schemes, water oxidation is typically the limiting half-reaction. Here, we introduce a molecular approach to the design of a photoanode that incorporates an electron acceptor, a sensitizer, an electron donor, and a water oxidation catalyst in a single molecular assembly. The strategy mimics the key elements in Photosystem II by initiating light-driven water oxidation with integration of a light absorber, an electron acceptor, an electron donor, and a catalyst in a controlled molecular environment on the surface of a conducting oxide electrode. Visible excitation of the assembly results in the appearance of reductive equivalents at the electrode and oxidative equivalents at a catalyst that persist for seconds in aqueous solutions. Steady-state illumination of the assembly with 440 nm light with an applied bias results in photoelectrochemical water oxidation with a per-photon absorbed efficiency of 2.3%. Here, the results are notable in demonstrating that light-driven water oxidation can be carried out at a conductive electrode in a structure with the functional elements of Photosystem II including charge separation and water oxidation.

Authors:
 [1]; ORCiD logo [1]; ORCiD logo [1];  [1]; ORCiD logo [2]; ORCiD logo [3]; ORCiD logo [1]; ORCiD logo [4]; ORCiD logo [1]; ORCiD logo [1]
  1. Univ. of North Carolina, Chapel Hill, NC (United States)
  2. Auburn Univ., AL (United States)
  3. Texas Christian Univ., Fort Worth, TX (United States)
  4. Florida International Univ., Miami, FL (United States)
Publication Date:
Research Org.:
Energy Frontier Research Centers (EFRC) (United States). Alliance for Molecular PhotoElectrode Design for Solar Fuels (AMPED); University of North Carolina, Chapel Hill, NC (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1566599
Grant/Contract Number:  
SC0001011
Resource Type:
Accepted Manuscript
Journal Name:
Journal of the American Chemical Society
Additional Journal Information:
Journal Volume: 141; Journal Issue: 19; Journal ID: ISSN 0002-7863
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; catalysis (homogeneous); catalysis (heterogeneous); electrocatalysis; solar (fuels); photosynthesis (natural and artificial); defects; charge transport; materials and chemistry by design; mesostructured materials; synthesis (novel materials); synthesis (self-assembly); charge transfer; electrodes; catalysts; oxidation water oxidation

Citation Formats

Wang, Degao, Sampaio, Renato N., Troian-Gautier, Ludovic, Marquard, Seth L., Farnum, Byron H., Sherman, Benjamin D., Sheridan, Matthew V., Dares, Christopher J., Meyer, Gerald J., and Meyer, Thomas J. Molecular Photoelectrode for Water Oxidation Inspired by Photosystem II. United States: N. p., 2019. Web. doi:10.1021/jacs.9b02548.
Wang, Degao, Sampaio, Renato N., Troian-Gautier, Ludovic, Marquard, Seth L., Farnum, Byron H., Sherman, Benjamin D., Sheridan, Matthew V., Dares, Christopher J., Meyer, Gerald J., & Meyer, Thomas J. Molecular Photoelectrode for Water Oxidation Inspired by Photosystem II. United States. https://doi.org/10.1021/jacs.9b02548
Wang, Degao, Sampaio, Renato N., Troian-Gautier, Ludovic, Marquard, Seth L., Farnum, Byron H., Sherman, Benjamin D., Sheridan, Matthew V., Dares, Christopher J., Meyer, Gerald J., and Meyer, Thomas J. Thu . "Molecular Photoelectrode for Water Oxidation Inspired by Photosystem II". United States. https://doi.org/10.1021/jacs.9b02548. https://www.osti.gov/servlets/purl/1566599.
@article{osti_1566599,
title = {Molecular Photoelectrode for Water Oxidation Inspired by Photosystem II},
author = {Wang, Degao and Sampaio, Renato N. and Troian-Gautier, Ludovic and Marquard, Seth L. and Farnum, Byron H. and Sherman, Benjamin D. and Sheridan, Matthew V. and Dares, Christopher J. and Meyer, Gerald J. and Meyer, Thomas J.},
abstractNote = {In artificial photosynthesis, the sun drives water splitting into H2 and O2 or converts CO2 into a useful form of carbon. In most schemes, water oxidation is typically the limiting half-reaction. Here, we introduce a molecular approach to the design of a photoanode that incorporates an electron acceptor, a sensitizer, an electron donor, and a water oxidation catalyst in a single molecular assembly. The strategy mimics the key elements in Photosystem II by initiating light-driven water oxidation with integration of a light absorber, an electron acceptor, an electron donor, and a catalyst in a controlled molecular environment on the surface of a conducting oxide electrode. Visible excitation of the assembly results in the appearance of reductive equivalents at the electrode and oxidative equivalents at a catalyst that persist for seconds in aqueous solutions. Steady-state illumination of the assembly with 440 nm light with an applied bias results in photoelectrochemical water oxidation with a per-photon absorbed efficiency of 2.3%. Here, the results are notable in demonstrating that light-driven water oxidation can be carried out at a conductive electrode in a structure with the functional elements of Photosystem II including charge separation and water oxidation.},
doi = {10.1021/jacs.9b02548},
journal = {Journal of the American Chemical Society},
number = 19,
volume = 141,
place = {United States},
year = {Thu Apr 25 00:00:00 EDT 2019},
month = {Thu Apr 25 00:00:00 EDT 2019}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 34 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Powering the planet: Chemical challenges in solar energy utilization
journal, October 2006

  • Lewis, N. S.; Nocera, D. G.
  • Proceedings of the National Academy of Sciences, Vol. 103, Issue 43, p. 15729-15735
  • DOI: 10.1073/pnas.0603395103

Chemical approaches to artificial photosynthesis
journal, May 1989


Oxidizing water two ways
journal, September 2011


Solar Water Splitting Cells
journal, November 2010

  • Walter, Michael G.; Warren, Emily L.; McKone, James R.
  • Chemical Reviews, Vol. 110, Issue 11, p. 6446-6473
  • DOI: 10.1021/cr1002326

Electrochemical Photolysis of Water at a Semiconductor Electrode
journal, July 1972

  • Fujishima, Akira; Honda, Kenichi
  • Nature, Vol. 238, Issue 5358, p. 37-38
  • DOI: 10.1038/238037a0

Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation
journal, May 2014


High-Performance Silicon Photoanodes Passivated with Ultrathin Nickel Films for Water Oxidation
journal, November 2013


Semiconductor Nanowires for Artificial Photosynthesis
journal, September 2013

  • Liu, Chong; Dasgupta, Neil P.; Yang, Peidong
  • Chemistry of Materials, Vol. 26, Issue 1
  • DOI: 10.1021/cm4023198

Solar Water Splitting: Progress Using Hematite (α-Fe2O3) Photoelectrodes
journal, March 2011

  • Sivula, Kevin; Le Formal, Florian; Grätzel, Michael
  • ChemSusChem, Vol. 4, Issue 4
  • DOI: 10.1002/cssc.201000416

Light-Harvesting and Photocurrent Generation by Gold Electrodes Modified with Mixed Self-Assembled Monolayers of Boron−Dipyrrin and Ferrocene−Porphyrin−Fullerene Triad
journal, January 2001

  • Imahori, Hiroshi; Norieda, Hiroyuki; Yamada, Hiroko
  • Journal of the American Chemical Society, Vol. 123, Issue 1
  • DOI: 10.1021/ja002154k

Photodriven transmembrane charge separation and electron transfer by a carotenoporphyrin–quinone triad
journal, August 1985

  • Seta, Patrick; Bienvenue, Elisabeth; Moore, Ana L.
  • Nature, Vol. 316, Issue 6029
  • DOI: 10.1038/316653a0

Evolution of reaction center mimics to systems capable of generating solar fuel
journal, February 2013

  • Sherman, Benjamin D.; Vaughn, Michael D.; Bergkamp, Jesse J.
  • Photosynthesis Research, Vol. 120, Issue 1-2
  • DOI: 10.1007/s11120-013-9795-4

Linkage and Solvent Dependence of Photoinduced Electron Transfer in Zincporphyrin-C 60 Dyads
journal, January 1996

  • Imahori, Hiroshi; Hagiwara, Kiyoshi; Aoki, Masanori
  • Journal of the American Chemical Society, Vol. 118, Issue 47
  • DOI: 10.1021/ja9628415

Photoinduced Charge Separation and Charge Recombination to a Triplet State in a Carotene−Porphyrin−Fullerene Triad
journal, February 1997

  • Liddell, Paul A.; Kuciauskas, Darius; Sumida, John P.
  • Journal of the American Chemical Society, Vol. 119, Issue 6
  • DOI: 10.1021/ja9631054

A Charge‐Separated State that Lives for Almost a Second at a Conductive Metal Oxide Interface
journal, November 2018

  • Sampaio, Renato N.; Troian‐Gautier, Ludovic; Meyer, Gerald J.
  • Angewandte Chemie, Vol. 130, Issue 47
  • DOI: 10.1002/ange.201807627

Visible photoelectrochemical water splitting into H 2 and O 2 in a dye-sensitized photoelectrosynthesis cell
journal, April 2015

  • Alibabaei, Leila; Sherman, Benjamin D.; Norris, Michael R.
  • Proceedings of the National Academy of Sciences, Vol. 112, Issue 19
  • DOI: 10.1073/pnas.1506111112

Organic Dye-Sensitized Tandem Photoelectrochemical Cell for Light Driven Total Water Splitting
journal, July 2015

  • Li, Fusheng; Fan, Ke; Xu, Bo
  • Journal of the American Chemical Society, Vol. 137, Issue 28
  • DOI: 10.1021/jacs.5b04856

A visible light water-splitting cell with a photoanode formed by codeposition of a high-potential porphyrin and an iridium water-oxidation catalyst
journal, January 2011

  • Moore, Gary F.; Blakemore, James D.; Milot, Rebecca L.
  • Energy & Environmental Science, Vol. 4, Issue 7
  • DOI: 10.1039/c1ee01037a

A Dye-Sensitized Photoelectrochemical Tandem Cell for Light Driven Hydrogen Production from Water
journal, December 2016

  • Sherman, Benjamin D.; Sheridan, Matthew V.; Wee, Kyung-Ryang
  • Journal of the American Chemical Society, Vol. 138, Issue 51
  • DOI: 10.1021/jacs.6b10699

Water splitting dye-sensitized solar cells
journal, June 2017


Chemical approaches to artificial photosynthesis
journal, September 2012

  • Concepcion, J. J.; House, R. L.; Papanikolas, J. M.
  • Proceedings of the National Academy of Sciences, Vol. 109, Issue 39
  • DOI: 10.1073/pnas.1212254109

Visible light-driven water oxidation—from molecular catalysts to photoelectrochemical cells
journal, January 2011

  • Duan, Lele; Tong, Lianpeng; Xu, Yunhua
  • Energy & Environmental Science, Vol. 4, Issue 9
  • DOI: 10.1039/c1ee01276b

Visible Light Driven Water Splitting in a Molecular Device with Unprecedentedly High Photocurrent Density
journal, March 2013

  • Gao, Yan; Ding, Xin; Liu, Jianhui
  • Journal of the American Chemical Society, Vol. 135, Issue 11
  • DOI: 10.1021/ja400402d

Solar Fuels via Artificial Photosynthesis
journal, December 2009

  • Gust, Devens; Moore, Thomas A.; Moore, Ana L.
  • Accounts of Chemical Research, Vol. 42, Issue 12
  • DOI: 10.1021/ar900209b

Visible Light Water Splitting Using Dye-Sensitized Oxide Semiconductors
journal, December 2009

  • Youngblood, W. Justin; Lee, Seung-Hyun Anna; Maeda, Kazuhiko
  • Accounts of Chemical Research, Vol. 42, Issue 12
  • DOI: 10.1021/ar9002398

Generation of Long-Lived Redox Equivalents in Self-Assembled Bilayer Structures on Metal Oxide Electrodes
journal, March 2017

  • Shan, Bing; Farnum, Byron H.; Wee, Kyung-Ryang
  • The Journal of Physical Chemistry C, Vol. 121, Issue 11
  • DOI: 10.1021/acs.jpcc.6b12416

Modulating Hole Transport in Multilayered Photocathodes with Derivatized p-Type Nickel Oxide and Molecular Assemblies for Solar-Driven Water Splitting
journal, August 2017

  • Shan, Bing; Sherman, Benjamin D.; Klug, Christina M.
  • The Journal of Physical Chemistry Letters, Vol. 8, Issue 18
  • DOI: 10.1021/acs.jpclett.7b01911

Interfacial Deposition of Ru(II) Bipyridine-Dicarboxylate Complexes by Ligand Substitution for Applications in Water Oxidation Catalysis
journal, January 2018

  • Wang, Degao; Marquard, Seth L.; Troian-Gautier, Ludovic
  • Journal of the American Chemical Society, Vol. 140, Issue 2
  • DOI: 10.1021/jacs.7b10809

Layer-by-Layer Molecular Assemblies for Dye-Sensitized Photoelectrosynthesis Cells Prepared by Atomic Layer Deposition
journal, August 2017

  • Wang, Degao; Sheridan, Matthew V.; Shan, Bing
  • Journal of the American Chemical Society, Vol. 139, Issue 41
  • DOI: 10.1021/jacs.7b07216

Plasmon-enhanced light-driven water oxidation by a dye-sensitized photoanode
journal, August 2017

  • Wang, Degao; Sherman, Benjamin D.; Farnum, Byron H.
  • Proceedings of the National Academy of Sciences, Vol. 114, Issue 37
  • DOI: 10.1073/pnas.1708336114

Direct photoactivation of a nickel-based, water-reduction photocathode by a highly conjugated supramolecular chromophore
journal, January 2018

  • Shan, Bing; Nayak, Animesh; N. Sampaio, Renato
  • Energy & Environmental Science, Vol. 11, Issue 2
  • DOI: 10.1039/C7EE03115G

Self-assembled molecular p/n junctions for applications in dye-sensitized solar energy conversion
journal, June 2016

  • Farnum, Byron H.; Wee, Kyung-Ryang; Meyer, Thomas J.
  • Nature Chemistry, Vol. 8, Issue 9
  • DOI: 10.1038/nchem.2536

Self-Assembled Bilayer Films of Ruthenium(II)/Polypyridyl Complexes through Layer-by-Layer Deposition on Nanostructured Metal Oxides
journal, November 2012

  • Hanson, Kenneth; Torelli, Daniel A.; Vannucci, Aaron K.
  • Angewandte Chemie, Vol. 124, Issue 51
  • DOI: 10.1002/ange.201206882

Synthesis and photophysical characterization of porphyrin and porphyrin–Ru(ii) polypyridyl chromophore–catalyst assemblies on mesoporous metal oxides
journal, January 2014

  • Nayak, Animesh; Knauf, Robin R.; Hanson, Kenneth
  • Chemical Science, Vol. 5, Issue 8
  • DOI: 10.1039/c4sc00875h

The Possible Role of Proton-Coupled Electron Transfer (PCET) in Water Oxidation by Photosystem II
journal, July 2007

  • Meyer, Thomas J.; Huynh, My Hang V.; Thorp, H. Holden
  • Angewandte Chemie International Edition, Vol. 46, Issue 28
  • DOI: 10.1002/anie.200600917

Water-Splitting Chemistry of Photosystem II
journal, November 2006

  • McEvoy, James P.; Brudvig, Gary W.
  • Chemical Reviews, Vol. 106, Issue 11
  • DOI: 10.1021/cr0204294

Mimicking the electron transfer chain in photosystem II with a molecular triad thermodynamically capable of water oxidation
journal, May 2012

  • Megiatto, J. D.; Antoniuk-Pablant, A.; Sherman, B. D.
  • Proceedings of the National Academy of Sciences, Vol. 109, Issue 39
  • DOI: 10.1073/pnas.1118348109

Improving the efficiency of water splitting in dye-sensitized solar cells by using a biomimetic electron transfer mediator
journal, April 2012

  • Zhao, Y.; Swierk, J. R.; Megiatto, J. D.
  • Proceedings of the National Academy of Sciences, Vol. 109, Issue 39
  • DOI: 10.1073/pnas.1118339109

Mechanism of water oxidation by [Ru(bda)(L) 2 ]: the return of the “blue dimer”
journal, January 2015

  • Concepcion, Javier J.; Zhong, Diane K.; Szalda, David J.
  • Chemical Communications, Vol. 51, Issue 19
  • DOI: 10.1039/C4CC07968J

Optical Intramolecular Electron Transfer in Opposite Directions through the Same Bridge That Follows Different Pathways
journal, May 2018

  • Piechota, Eric J.; Troian-Gautier, Ludovic; Sampaio, Renato N.
  • Journal of the American Chemical Society, Vol. 140, Issue 23
  • DOI: 10.1021/jacs.8b02715

Thin Film Actinometers for Transient Absorption Spectroscopy:  Applications to Dye-Sensitized Solar Cells
journal, September 2003

  • Bergeron, Bryan V.; Kelly, Craig A.; Meyer, Gerald J.
  • Langmuir, Vol. 19, Issue 20
  • DOI: 10.1021/la035053j

Two Electrode Collector–Generator Method for the Detection of Electrochemically or Photoelectrochemically Produced O 2
journal, July 2016

  • Sherman, Benjamin D.; Sheridan, Matthew V.; Dares, Christopher J.
  • Analytical Chemistry, Vol. 88, Issue 14
  • DOI: 10.1021/acs.analchem.6b00738

Mechanisms of Water Oxidation from the Blue Dimer to Photosystem II
journal, March 2008

  • Liu, Feng; Concepcion, Javier J.; Jurss, Jonah W.
  • Inorganic Chemistry, Vol. 47, Issue 6
  • DOI: 10.1021/ic701249s

Ultrafast Electrochromic Windows Based on Redox-Chromophore Modified Nanostructured Semiconducting and Conducting Films
journal, December 2000

  • Cummins, David; Boschloo, Gerrit; Ryan, Michael
  • The Journal of Physical Chemistry B, Vol. 104, Issue 48
  • DOI: 10.1021/jp001763b

Ultrafast, Light-Induced Electron Transfer in a Perylene Diimide Chromophore-Donor Assembly on TiO 2
journal, November 2015

  • Brennaman, M. Kyle; Norris, Michael R.; Gish, Melissa K.
  • The Journal of Physical Chemistry Letters, Vol. 6, Issue 23
  • DOI: 10.1021/acs.jpclett.5b02194

Kinetics teach that electronic coupling lowers the free-energy change that accompanies electron transfer
journal, June 2018

  • Sampaio, Renato N.; Piechota, Eric J.; Troian-Gautier, Ludovic
  • Proceedings of the National Academy of Sciences, Vol. 115, Issue 28
  • DOI: 10.1073/pnas.1722401115

Kinetic pathway for interfacial electron transfer from a semiconductor to a molecule
journal, June 2016

  • Hu, Ke; Blair, Amber D.; Piechota, Eric J.
  • Nature Chemistry, Vol. 8, Issue 9
  • DOI: 10.1038/nchem.2549

A High-Valent Metal-Oxo Species Produced by Photoinduced One-Electron, Two-Proton Transfer Reactivity
journal, December 2017


Non-symmetrical dielectric relaxation behaviour arising from a simple empirical decay function
journal, January 1970

  • Williams, Graham; Watts, David C.
  • Transactions of the Faraday Society, Vol. 66
  • DOI: 10.1039/tf9706600080

Works referencing / citing this record:

A stable dye-sensitized photoelectrosynthesis cell mediated by a NiO overlayer for water oxidation
journal, September 2019

  • Wang, Degao; Niu, Fujun; Mortelliti, Michael J.
  • Proceedings of the National Academy of Sciences, Vol. 117, Issue 23
  • DOI: 10.1073/pnas.1821687116