DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Analysis of the Effect of Vehicle Platooning on the Optimal Control of a Heavy Duty Engine Thermal System

Abstract

One promising method for reducing fuel consumption and emissions, particularly in heavy duty trucks, is platooning. As the distance between vehicles decreases, the following vehicles will experience less aerodynamic drag on the front of the vehicle. However, reducing the velocity of the air contacting the front of the vehicle could have adverse effects on the temperature of the engine. To compensate for this effect, the energy consumption of the engine cooling system might increase, ultimately limiting the overall improvements obtained with platooning. Understanding the coupling between drag reduction and engine cooling load requirement is key for successfully implementing platooning strategies. Additionally, in a Connected and Automated Vehicle (CAV) environment, where information of the future engine load becomes available, the operation of the cooling system can be optimized in order to achieve the maximum fuel consumption reduction. In this paper, a control-oriented physics-based model for the engine cooling loop of a Volvo engine is developed and validated against road data. Starting from the validated model, an optimal control problem for the coolant system is formulated considering the tradeoff between the tracking of the engine temperature setpoint and the corresponding fuel consumption under different trailing distances. To compare the coolant system performance,more » Dynamic Programming (DP) is used to determine the global optimal solution for the coolant system actuator. The coupling between optimal cooling system operation and reduction in ram air are evaluated by comparing the results obtained from the DP under different platooning conditions against the unrestricted scenario. In addition, the paper analyzes the changes in the tradeoff between fuel consumption and setpoint tracking for different vehicle distances. This analysis will provide useful insight on the sensitivity of the coolant system controller calibration to the platoon distance.« less

Authors:
ORCiD logo [1];  [1];  [1];  [1];  [1];  [1];  [1]
  1. The Ohio State Univ., Columbus, OH (United States)
Publication Date:
Research Org.:
The Ohio State Univ., Columbus, OH (United States)
Sponsoring Org.:
USDOE Advanced Research Projects Agency - Energy (ARPA-E)
OSTI Identifier:
1559270
Grant/Contract Number:  
AR0000801
Resource Type:
Accepted Manuscript
Journal Name:
Society of Automotive Engineers Technical Paper Series
Additional Journal Information:
Journal Volume: 1; Conference: SAE WCX 2019, Detroit, MI., April 9-11; Journal ID: ISSN 0148-7191
Publisher:
SAE International
Country of Publication:
United States
Language:
English
Subject:
32 ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION; 42 ENGINEERING

Citation Formats

Block, Brian, Huynh, Brian, Boyle, Stephen, Stockar, Stephanie, Geyer, Stephen, Li, Jian, and Huber, Jeffrey. Analysis of the Effect of Vehicle Platooning on the Optimal Control of a Heavy Duty Engine Thermal System. United States: N. p., 2019. Web. doi:10.4271/2019-01-1259.
Block, Brian, Huynh, Brian, Boyle, Stephen, Stockar, Stephanie, Geyer, Stephen, Li, Jian, & Huber, Jeffrey. Analysis of the Effect of Vehicle Platooning on the Optimal Control of a Heavy Duty Engine Thermal System. United States. https://doi.org/10.4271/2019-01-1259
Block, Brian, Huynh, Brian, Boyle, Stephen, Stockar, Stephanie, Geyer, Stephen, Li, Jian, and Huber, Jeffrey. Tue . "Analysis of the Effect of Vehicle Platooning on the Optimal Control of a Heavy Duty Engine Thermal System". United States. https://doi.org/10.4271/2019-01-1259. https://www.osti.gov/servlets/purl/1559270.
@article{osti_1559270,
title = {Analysis of the Effect of Vehicle Platooning on the Optimal Control of a Heavy Duty Engine Thermal System},
author = {Block, Brian and Huynh, Brian and Boyle, Stephen and Stockar, Stephanie and Geyer, Stephen and Li, Jian and Huber, Jeffrey},
abstractNote = {One promising method for reducing fuel consumption and emissions, particularly in heavy duty trucks, is platooning. As the distance between vehicles decreases, the following vehicles will experience less aerodynamic drag on the front of the vehicle. However, reducing the velocity of the air contacting the front of the vehicle could have adverse effects on the temperature of the engine. To compensate for this effect, the energy consumption of the engine cooling system might increase, ultimately limiting the overall improvements obtained with platooning. Understanding the coupling between drag reduction and engine cooling load requirement is key for successfully implementing platooning strategies. Additionally, in a Connected and Automated Vehicle (CAV) environment, where information of the future engine load becomes available, the operation of the cooling system can be optimized in order to achieve the maximum fuel consumption reduction. In this paper, a control-oriented physics-based model for the engine cooling loop of a Volvo engine is developed and validated against road data. Starting from the validated model, an optimal control problem for the coolant system is formulated considering the tradeoff between the tracking of the engine temperature setpoint and the corresponding fuel consumption under different trailing distances. To compare the coolant system performance, Dynamic Programming (DP) is used to determine the global optimal solution for the coolant system actuator. The coupling between optimal cooling system operation and reduction in ram air are evaluated by comparing the results obtained from the DP under different platooning conditions against the unrestricted scenario. In addition, the paper analyzes the changes in the tradeoff between fuel consumption and setpoint tracking for different vehicle distances. This analysis will provide useful insight on the sensitivity of the coolant system controller calibration to the platoon distance.},
doi = {10.4271/2019-01-1259},
journal = {Society of Automotive Engineers Technical Paper Series},
number = ,
volume = 1,
place = {United States},
year = {Tue Apr 02 00:00:00 EDT 2019},
month = {Tue Apr 02 00:00:00 EDT 2019}
}