DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The generation of mega-gauss fields on the Cornell beam research accelerator

Abstract

Intense magnetic fields modify quantum processes in extremely dense matter, calling for precise measurements in very harsh conditions. This endeavor becomes even more challenging because the generation of mega-gauss fields in a laboratory is far from trivial. Here, this paper presents a unique and compact approach to generate fields above 2 MG in less than 150 ns inside a volume on the order of half a cubic centimeter. Magnetic insulation, keeping plasma ablation close to the wire surface, and mechanical inertia, limiting coil motion throughout the current discharge, enable the generation of intense magnetic fields where the shape of the conductor controls the field topology with exquisite precision and versatility, limiting the need for mapping magnetic fields experimentally.

Authors:
ORCiD logo [1]; ORCiD logo [2];  [3]; ORCiD logo [3];  [1]
  1. Univ. of Rochester, NY (United States). Physics and Astronomy Dept., Extreme State Physics Lab.; Univ. of Rochester, NY (United States). Lab. for Laser Energetics
  2. Univ. of Rochester, NY (United States). Lab. for Laser Energetics
  3. Cornell Univ., Ithaca, NY (United States). Lab. for Plasma Studies
Publication Date:
Research Org.:
Univ. of Rochester, NY (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1540239
Alternate Identifier(s):
OSTI ID: 1468506
Grant/Contract Number:  
NA0001944; SC0016252
Resource Type:
Accepted Manuscript
Journal Name:
Review of Scientific Instruments
Additional Journal Information:
Journal Volume: 89; Journal Issue: 9; Journal ID: ISSN 0034-6748
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
47 OTHER INSTRUMENTATION; instruments & instrumentation; physics

Citation Formats

Gourdain, P. -A., Brent, G., Greenly, J. B., Hammer, D. A., and Shapovalov, R. V. The generation of mega-gauss fields on the Cornell beam research accelerator. United States: N. p., 2018. Web. doi:10.1063/1.5041946.
Gourdain, P. -A., Brent, G., Greenly, J. B., Hammer, D. A., & Shapovalov, R. V. The generation of mega-gauss fields on the Cornell beam research accelerator. United States. https://doi.org/10.1063/1.5041946
Gourdain, P. -A., Brent, G., Greenly, J. B., Hammer, D. A., and Shapovalov, R. V. Tue . "The generation of mega-gauss fields on the Cornell beam research accelerator". United States. https://doi.org/10.1063/1.5041946. https://www.osti.gov/servlets/purl/1540239.
@article{osti_1540239,
title = {The generation of mega-gauss fields on the Cornell beam research accelerator},
author = {Gourdain, P. -A. and Brent, G. and Greenly, J. B. and Hammer, D. A. and Shapovalov, R. V.},
abstractNote = {Intense magnetic fields modify quantum processes in extremely dense matter, calling for precise measurements in very harsh conditions. This endeavor becomes even more challenging because the generation of mega-gauss fields in a laboratory is far from trivial. Here, this paper presents a unique and compact approach to generate fields above 2 MG in less than 150 ns inside a volume on the order of half a cubic centimeter. Magnetic insulation, keeping plasma ablation close to the wire surface, and mechanical inertia, limiting coil motion throughout the current discharge, enable the generation of intense magnetic fields where the shape of the conductor controls the field topology with exquisite precision and versatility, limiting the need for mapping magnetic fields experimentally.},
doi = {10.1063/1.5041946},
journal = {Review of Scientific Instruments},
number = 9,
volume = 89,
place = {United States},
year = {Tue Sep 04 00:00:00 EDT 2018},
month = {Tue Sep 04 00:00:00 EDT 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 1 work
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Matter in strong magnetic fields
journal, August 2001


Auto-magnetizing liners for magnetized inertial fusion
journal, January 2017

  • Slutz, S. A.; Jennings, C. A.; Awe, T. J.
  • Physics of Plasmas, Vol. 24, Issue 1
  • DOI: 10.1063/1.4973551

Pulsed-power-driven cylindrical liner implosions of laser preheated fuel magnetized with an axial field
journal, May 2010

  • Slutz, S. A.; Herrmann, M. C.; Vesey, R. A.
  • Physics of Plasmas, Vol. 17, Issue 5
  • DOI: 10.1063/1.3333505

The National High Magnetic Field Laboratory Pulsed-Field Facility at Los Alamos National Laboratory
journal, April 2004


Production and Use of High Transient Magnetic Fields. I
journal, April 1956

  • Furth, H. P.; Waniek, R. W.
  • Review of Scientific Instruments, Vol. 27, Issue 4
  • DOI: 10.1063/1.1715520

Beyond 100 Tesla: Scientific experiments using single-turn coils
journal, January 2013

  • Portugall, Oliver; Solane, Pierre Yves; Plochocka, Paulina
  • Comptes Rendus Physique, Vol. 14, Issue 1
  • DOI: 10.1016/j.crhy.2012.11.005

Self-generated surface magnetic fields inhibit laser-driven sheath acceleration of high-energy protons
journal, January 2018


A simple theory of magnetic insulation from basic physical considerations
journal, August 1983


Kilotesla Magnetic Field due to a Capacitor-Coil Target Driven by High Power Laser
journal, January 2013

  • Fujioka, Shinsuke; Zhang, Zhe; Ishihara, Kazuhiro
  • Scientific Reports, Vol. 3, Issue 1
  • DOI: 10.1038/srep01170

A 1MA, variable risetime pulse generator for high energy density plasma research
journal, July 2008

  • Greenly, J. B.; Douglas, J. D.; Hammer, D. A.
  • Review of Scientific Instruments, Vol. 79, Issue 7
  • DOI: 10.1063/1.2949819

Axial magnetic field injection in magnetized liner inertial fusion
journal, October 2017

  • Gourdain, P. -A.; Adams, M. B.; Davies, J. R.
  • Physics of Plasmas, Vol. 24, Issue 10
  • DOI: 10.1063/1.4986640

Helical plasma striations in liners in the presence of an external axial magnetic field
journal, February 2016

  • Atoyan, L.; Hammer, D. A.; Kusse, B. R.
  • Physics of Plasmas, Vol. 23, Issue 2
  • DOI: 10.1063/1.4942787

Theory of magnetic insulation
journal, January 1974


Direct measurement of kilo-tesla level magnetic field generated with laser-driven capacitor-coil target by proton deflectometry
journal, February 2016

  • Law, K. F. F.; Bailly-Grandvaux, M.; Morace, A.
  • Applied Physics Letters, Vol. 108, Issue 9
  • DOI: 10.1063/1.4943078

A correlation electron cyclotron emission diagnostic and the importance of multifield fluctuation measurements for testing nonlinear gyrokinetic turbulence simulations
journal, October 2008

  • White, A. E.; Schmitz, L.; Peebles, W. A.
  • Review of Scientific Instruments, Vol. 79, Issue 10
  • DOI: 10.1063/1.2981186

Magnetic turbulence in a table-top laser-plasma relevant to astrophysical scenarios
journal, June 2017

  • Chatterjee, Gourab; Schoeffler, Kevin M.; Kumar Singh, Prashant
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms15970

Relaxation model for extended magnetohydrodynamics: Comparison to magnetohydrodynamics for dense Z-pinches
journal, January 2011

  • Seyler, C. E.; Martin, M. R.
  • Physics of Plasmas, Vol. 18, Issue 1
  • DOI: 10.1063/1.3543799

Production and Use of High Transient Magnetic Fields. II
journal, November 1957

  • Furth, H. P.; Levine, M. A.; Waniek, R. W.
  • Review of Scientific Instruments, Vol. 28, Issue 11
  • DOI: 10.1063/1.1715773

Beryllium liner implosion experiments on the Z accelerator in preparation for magnetized liner inertial fusion
journal, May 2013

  • McBride, R. D.; Martin, M. R.; Lemke, R. W.
  • Physics of Plasmas, Vol. 20, Issue 5
  • DOI: 10.1063/1.4803079

Megagauss-level magnetic field production in cm-scale auto-magnetizing helical liners pulsed to 500 kA in 125 ns
journal, May 2018

  • Shipley, G. A.; Awe, T. J.; Hutsel, B. T.
  • Physics of Plasmas, Vol. 25, Issue 5
  • DOI: 10.1063/1.5028142

The Role of Flux Advection in the Development of the Ablation Streams and Precursors of Wire Array Z-pinches
conference, January 2009

  • Greenly, John; Martin, Matthew; Blesener, Isaac
  • DENSE Z-PINCHES: Proceedings of the 7th International Conference on Dense Z-Pinches, AIP Conference Proceedings
  • DOI: 10.1063/1.3079752

Matter under extreme conditions of temperature and pressure
journal, January 1985


The impact of Hall physics on magnetized high energy density plasma jets
journal, May 2014

  • Gourdain, P. -A.; Seyler, C. E.; Atoyan, L.
  • Physics of Plasmas, Vol. 21, Issue 5
  • DOI: 10.1063/1.4872022

Megagauss magnetic field generation in single-turn coils: new frontiers for scientific experiments
journal, September 1999

  • Portugall, O.; Puhlmann, N.; Müller, H. U.
  • Journal of Physics D: Applied Physics, Vol. 32, Issue 18
  • DOI: 10.1088/0022-3727/32/18/306

Two-dimensional simulations of thermonuclear burn in ignition-scale inertial confinement fusion targets under compressed axial magnetic fields
journal, July 2013

  • Perkins, L. J.; Logan, B. G.; Zimmerman, G. B.
  • Physics of Plasmas, Vol. 20, Issue 7
  • DOI: 10.1063/1.4816813