DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Modeled Response of Greenland Snowmelt to the Presence of Biomass Burning-Based Absorbing Aerosols in the Atmosphere and Snow

Abstract

Abstract Biomass burning produces smoke aerosols that are emitted into the atmosphere. Some smoke constituents, notably black carbon, are highly effective light‐absorbing aerosols (LAA). Emitted LAA can be transported to high‐albedo regions like the Greenland Ice Sheet (GrIS) and affect local snowmelt. In the summer, the effects of LAA in Greenland are uncertain. To explore how LAA affect GrIS snowmelt and surface energy flux in the summer, we conduct idealized global climate model simulations with perturbed aerosol amounts and properties in the GrIS snow and overlying atmosphere. The in‐snow and atmospheric aerosol burdens we select range from background values measured on the GrIS to unrealistically high values. This helps us explore the linearity of snowmelt response and to achieve high signal‐to‐noise ratios. With LAA operating only in the atmosphere, we find no significant change in snowmelt due to the competing effects of surface dimming and tropospheric warming. Regardless of atmospheric LAA presence, in‐snow black carbon‐equivalent mixing ratios greater than ~60 ng/g produce statistically significant snowmelt increases over much of the GrIS. We find that net surface energy flux changes correspond well to snowmelt changes for all cases. The dominant component of surface energy flux change is solar energy flux, but sensiblemore » and longwave energy fluxes respond to temperature changes. Atmospheric LAA dampen the magnitude of solar radiation absorbed by in‐snow LAA when both varieties are simulated. In general, the significant melt and surface energy flux changes we simulate occur with LAA quantities that have never been recorded in Greenland.« less

Authors:
ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [3]; ORCiD logo [4]; ORCiD logo [5]; ORCiD logo [6]
  1. Univ. of Michigan, Ann Arbor, MI (United States)
  2. Duke Univ., Durham, NC (United States)
  3. Univ. of New Hampshire, Durham, NH (United States)
  4. Dartmouth College, Hanover, NH (United States)
  5. NASA Langley Research Center, Hampton, VA (United States)
  6. LATMOS, Paris (France)
Publication Date:
Research Org.:
Univ. of Michigan, Ann Arbor, MI (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1539729
Alternate Identifier(s):
OSTI ID: 1441014
Grant/Contract Number:  
SC0013991; DE‐SC0013991
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Geophysical Research: Atmospheres
Additional Journal Information:
Journal Volume: 123; Journal Issue: 11; Journal ID: ISSN 2169-897X
Publisher:
American Geophysical Union
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES; Meteorology & Atmospheric Sciences

Citation Formats

Ward, Jamie L., Flanner, Mark G., Bergin, Mike, Dibb, Jack E., Polashenski, Chris M., Soja, Amber J., and Thomas, Jennie L. Modeled Response of Greenland Snowmelt to the Presence of Biomass Burning-Based Absorbing Aerosols in the Atmosphere and Snow. United States: N. p., 2018. Web. doi:10.1029/2017jd027878.
Ward, Jamie L., Flanner, Mark G., Bergin, Mike, Dibb, Jack E., Polashenski, Chris M., Soja, Amber J., & Thomas, Jennie L. Modeled Response of Greenland Snowmelt to the Presence of Biomass Burning-Based Absorbing Aerosols in the Atmosphere and Snow. United States. https://doi.org/10.1029/2017jd027878
Ward, Jamie L., Flanner, Mark G., Bergin, Mike, Dibb, Jack E., Polashenski, Chris M., Soja, Amber J., and Thomas, Jennie L. Sun . "Modeled Response of Greenland Snowmelt to the Presence of Biomass Burning-Based Absorbing Aerosols in the Atmosphere and Snow". United States. https://doi.org/10.1029/2017jd027878. https://www.osti.gov/servlets/purl/1539729.
@article{osti_1539729,
title = {Modeled Response of Greenland Snowmelt to the Presence of Biomass Burning-Based Absorbing Aerosols in the Atmosphere and Snow},
author = {Ward, Jamie L. and Flanner, Mark G. and Bergin, Mike and Dibb, Jack E. and Polashenski, Chris M. and Soja, Amber J. and Thomas, Jennie L.},
abstractNote = {Abstract Biomass burning produces smoke aerosols that are emitted into the atmosphere. Some smoke constituents, notably black carbon, are highly effective light‐absorbing aerosols (LAA). Emitted LAA can be transported to high‐albedo regions like the Greenland Ice Sheet (GrIS) and affect local snowmelt. In the summer, the effects of LAA in Greenland are uncertain. To explore how LAA affect GrIS snowmelt and surface energy flux in the summer, we conduct idealized global climate model simulations with perturbed aerosol amounts and properties in the GrIS snow and overlying atmosphere. The in‐snow and atmospheric aerosol burdens we select range from background values measured on the GrIS to unrealistically high values. This helps us explore the linearity of snowmelt response and to achieve high signal‐to‐noise ratios. With LAA operating only in the atmosphere, we find no significant change in snowmelt due to the competing effects of surface dimming and tropospheric warming. Regardless of atmospheric LAA presence, in‐snow black carbon‐equivalent mixing ratios greater than ~60 ng/g produce statistically significant snowmelt increases over much of the GrIS. We find that net surface energy flux changes correspond well to snowmelt changes for all cases. The dominant component of surface energy flux change is solar energy flux, but sensible and longwave energy fluxes respond to temperature changes. Atmospheric LAA dampen the magnitude of solar radiation absorbed by in‐snow LAA when both varieties are simulated. In general, the significant melt and surface energy flux changes we simulate occur with LAA quantities that have never been recorded in Greenland.},
doi = {10.1029/2017jd027878},
journal = {Journal of Geophysical Research: Atmospheres},
number = 11,
volume = 123,
place = {United States},
year = {Sun May 20 00:00:00 EDT 2018},
month = {Sun May 20 00:00:00 EDT 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 7 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Elucidating the Role of Anthropogenic Aerosols in Arctic Sea Ice Variations
journal, January 2018


Regional variability of ice core dust composition and provenance in Greenland: REGIONAL VARIABILITY OF ICE-CORE DUST
journal, December 2003

  • Bory, A. J. -M.; Biscaye, P. E.; Piotrowski, A. M.
  • Geochemistry, Geophysics, Geosystems, Vol. 4, Issue 12
  • DOI: 10.1029/2003GC000627

Climate-induced variations in global wildfire danger from 1979 to 2013
journal, July 2015

  • Jolly, W. Matt; Cochrane, Mark A.; Freeborn, Patrick H.
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms8537

Toward a minimal representation of aerosols in climate models: description and evaluation in the Community Atmosphere Model CAM5
journal, January 2012

  • Liu, X.; Easter, R. C.; Ghan, S. J.
  • Geoscientific Model Development, Vol. 5, Issue 3
  • DOI: 10.5194/gmd-5-709-2012

Global direct radiative forcing due to multicomponent anthropogenic and natural aerosols
journal, January 2001

  • Jacobson, Mark Z.
  • Journal of Geophysical Research: Atmospheres, Vol. 106, Issue D2
  • DOI: 10.1029/2000JD900514

An AeroCom assessment of black carbon in Arctic snow and sea ice
journal, January 2014

  • Jiao, C.; Flanner, M. G.; Balkanski, Y.
  • Atmospheric Chemistry and Physics, Vol. 14, Issue 5
  • DOI: 10.5194/acp-14-2399-2014

The Arctic response to remote and local forcing of black carbon
journal, January 2013

  • Sand, M.; Berntsen, T. K.; Kay, J. E.
  • Atmospheric Chemistry and Physics, Vol. 13, Issue 1
  • DOI: 10.5194/acp-13-211-2013

Pan-Arctic enhancements of light absorbing aerosol concentrations due to North American boreal forest fires during summer 2004
journal, January 2006

  • Stohl, A.; Andrews, E.; Burkhart, J. F.
  • Journal of Geophysical Research, Vol. 111, Issue D22
  • DOI: 10.1029/2006JD007216

A Model for the Spectral Albedo of Snow. II: Snow Containing Atmospheric Aerosols
journal, December 1980


A Characterization of the Present-Day Arctic Atmosphere in CCSM4
journal, April 2012


Global sensitivity studies of the direct radiative forcing due to anthropogenic sulfate and black carbon aerosols
journal, March 1998

  • Haywood, J. M.; Ramaswamy, V.
  • Journal of Geophysical Research: Atmospheres, Vol. 103, Issue D6
  • DOI: 10.1029/97JD03426

Quantifying the emission of light-absorbing particles: Measurements tailored to climate studies
journal, February 1998

  • Bond, Tami C.; Charlson, Robert J.; Heintzenberg, Jost
  • Geophysical Research Letters, Vol. 25, Issue 3
  • DOI: 10.1029/98GL00039

Global biomass burning: a synthesis and review of Holocene paleofire records and their controls
journal, April 2013


Recent burning of boreal forests exceeds fire regime limits of the past 10,000 years
journal, July 2013

  • Kelly, R.; Chipman, M. L.; Higuera, P. E.
  • Proceedings of the National Academy of Sciences, Vol. 110, Issue 32
  • DOI: 10.1073/pnas.1305069110

Global wildland fire season severity in the 21st century
journal, April 2013


Impact of disturbed desert soils on duration of mountain snow cover
journal, January 2007

  • Painter, Thomas H.; Barrett, Andrew P.; Landry, Christopher C.
  • Geophysical Research Letters, Vol. 34, Issue 12
  • DOI: 10.1029/2007GL030284

Quantifying black carbon deposition over the Greenland ice sheet from forest fires in Canada: BC DEPOSITION FROM FOREST FIRES
journal, August 2017

  • Thomas, J. L.; Polashenski, C. M.; Soja, A. J.
  • Geophysical Research Letters, Vol. 44, Issue 15
  • DOI: 10.1002/2017GL073701

Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application
journal, January 2010

  • Lamarque, J. -F.; Bond, T. C.; Eyring, V.
  • Atmospheric Chemistry and Physics, Vol. 10, Issue 15
  • DOI: 10.5194/acp-10-7017-2010

Climate of the Greenland ice sheet using a high-resolution climate model – Part 2: Near-surface climate and energy balance
journal, January 2010

  • Ettema, J.; van den Broeke, M. R.; van Meijgaard, E.
  • The Cryosphere, Vol. 4, Issue 4
  • DOI: 10.5194/tc-4-529-2010

The extreme melt across the Greenland ice sheet in 2012
journal, October 2012

  • Nghiem, S. V.; Hall, D. K.; Mote, T. L.
  • Geophysical Research Letters, Vol. 39, Issue 20
  • DOI: 10.1029/2012GL053611

Sources of carbonaceous aerosols and deposited black carbon in the Arctic in winter-spring: implications for radiative forcing
journal, January 2011


Local and remote controls on observed Arctic warming: CONTROLS ON ARCTIC WARMING
journal, May 2012

  • Screen, J. A.; Deser, C.; Simmonds, I.
  • Geophysical Research Letters, Vol. 39, Issue 10
  • DOI: 10.1029/2012GL051598

Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application
journal, January 2010

  • Lamarque, J. -F.; Bond, T. C.; Eyring, V.
  • Atmospheric Chemistry and Physics Discussions, Vol. 10, Issue 2
  • DOI: 10.5194/acpd-10-4963-2010

Global distribution and climate forcing of carbonaceous aerosols
journal, January 2002


Linking snowpack microphysics and albedo evolution
journal, January 2006

  • Flanner, Mark G.; Zender, Charles S.
  • Journal of Geophysical Research, Vol. 111, Issue D12
  • DOI: 10.1029/2005JD006834

Cloud influence on and response to seasonal Arctic sea ice loss
journal, January 2009

  • Kay, Jennifer E.; Gettelman, Andrew
  • Journal of Geophysical Research, Vol. 114, Issue D18
  • DOI: 10.1029/2009JD011773

Soot climate forcing via snow and ice albedos
journal, December 2003

  • Hansen, J.; Nazarenko, L.
  • Proceedings of the National Academy of Sciences, Vol. 101, Issue 2
  • DOI: 10.1073/pnas.2237157100

Threatened loss of the Greenland ice-sheet
journal, April 2004

  • Gregory, Jonathan M.; Huybrechts, Philippe; Raper, Sarah C. B.
  • Nature, Vol. 428, Issue 6983
  • DOI: 10.1038/428616a

Global and regional climate changes due to black carbon
journal, March 2008

  • Ramanathan, V.; Carmichael, G.
  • Nature Geoscience, Vol. 1, Issue 4
  • DOI: 10.1038/ngeo156

Climate Effects of Black Carbon Aerosols in China and India
journal, September 2002


Light-absorbing impurities in Arctic snow
journal, January 2010

  • Doherty, S. J.; Warren, S. G.; Grenfell, T. C.
  • Atmospheric Chemistry and Physics, Vol. 10, Issue 23
  • DOI: 10.5194/acp-10-11647-2010

Overview of Arctic Cloud and Radiation Characteristics
journal, August 1996


20th-Century Industrial Black Carbon Emissions Altered Arctic Climate Forcing
journal, September 2007


Present-day climate forcing and response from black carbon in snow
journal, January 2007

  • Flanner, Mark G.; Zender, Charles S.; Randerson, James T.
  • Journal of Geophysical Research, Vol. 112, Issue D11
  • DOI: 10.1029/2006JD008003

Evaluation of black carbon estimations in global aerosol models
journal, January 2009


Evaluation of black carbon estimations in global aerosol models
journal, January 2009

  • Koch, D.; Schulz, M.; Kinne, S.
  • Atmospheric Chemistry and Physics Discussions, Vol. 9, Issue 4
  • DOI: 10.5194/acpd-9-15769-2009

Increased Runoff from Melt from the Greenland Ice Sheet: A Response to Global Warming
journal, January 2008

  • Hanna, Edward; Huybrechts, Philippe; Steffen, Konrad
  • Journal of Climate, Vol. 21, Issue 2
  • DOI: 10.1175/2007JCLI1964.1

Dependence of climate forcing and response on the altitude of black carbon aerosols
journal, April 2011


Sensitivity of scattering and absorbing aerosol direct radiative forcing to physical climate factors: PHYSICAL CLIMATE EFFECTS ON AEROSOL DIRECT FORCING
journal, October 2012

  • Ocko, Ilissa B.; Ramaswamy, V.; Ginoux, Paul
  • Journal of Geophysical Research: Atmospheres, Vol. 117, Issue D20
  • DOI: 10.1029/2012JD018019

Climate-induced boreal forest change: Predictions versus current observations
journal, April 2007


Implications of changing climate for global wildland fire
journal, January 2009

  • Flannigan, Mike D.; Krawchuk, Meg A.; de Groot, William J.
  • International Journal of Wildland Fire, Vol. 18, Issue 5
  • DOI: 10.1071/WF08187

Snowpack radiative heating: Influence on Tibetan Plateau climate
journal, January 2005


Neither dust nor black carbon causing apparent albedo decline in Greenland's dry snow zone: Implications for MODIS C5 surface reflectance: GREENLAND ALBEDO DECLINE NOT DUST OR BC
journal, November 2015

  • Polashenski, Chris M.; Dibb, Jack E.; Flanner, Mark G.
  • Geophysical Research Letters, Vol. 42, Issue 21
  • DOI: 10.1002/2015GL065912

Climate change and forest fires synergistically drive widespread melt events of the Greenland Ice Sheet
journal, May 2014

  • Keegan, K. M.; Albert, M. R.; McConnell, J. R.
  • Proceedings of the National Academy of Sciences, Vol. 111, Issue 22
  • DOI: 10.1073/pnas.1405397111

Light-absorbing impurities in Arctic snow
journal, January 2010

  • Doherty, S. J.; Warren, S. G.; Grenfell, T. C.
  • Atmospheric Chemistry and Physics Discussions, Vol. 10, Issue 8
  • DOI: 10.5194/acpd-10-18807-2010

Impacts of climate change from 2000 to 2050 on wildfire activity and carbonaceous aerosol concentrations in the western United States
journal, January 2009

  • Spracklen, D. V.; Mickley, L. J.; Logan, J. A.
  • Journal of Geophysical Research, Vol. 114, Issue D20
  • DOI: 10.1029/2008JD010966

Bounding the role of black carbon in the climate system: A scientific assessment: BLACK CARBON IN THE CLIMATE SYSTEM
journal, June 2013

  • Bond, T. C.; Doherty, S. J.; Fahey, D. W.
  • Journal of Geophysical Research: Atmospheres, Vol. 118, Issue 11
  • DOI: 10.1002/jgrd.50171

The sensitivity of global climate to the episodicity of fire aerosol emissions: MODELING FIRE EPISODICITY
journal, November 2015

  • Clark, Spencer K.; Ward, Daniel S.; Mahowald, Natalie M.
  • Journal of Geophysical Research: Atmospheres, Vol. 120, Issue 22
  • DOI: 10.1002/2015JD024068

Arctic climate sensitivity to local black carbon: BLACK CARBON INFLUENCE ON ARCTIC CLIMATE
journal, February 2013

  • Flanner, Mark G.
  • Journal of Geophysical Research: Atmospheres, Vol. 118, Issue 4
  • DOI: 10.1002/jgrd.50176

Changing black carbon transport to the Arctic from present day to the end of 21st century
journal, May 2016

  • Jiao, Chaoyi; Flanner, Mark G.
  • Journal of Geophysical Research: Atmospheres, Vol. 121, Issue 9
  • DOI: 10.1002/2015JD023964

A modeling study on the climate impacts of black carbon aerosols: CLIMATE ASPECTS OF BLACK CARBON
journal, February 2004

  • Wang, Chien
  • Journal of Geophysical Research: Atmospheres, Vol. 109, Issue D3
  • DOI: 10.1029/2003JD004084

The extreme melt across the Greenland ice sheet in 2012
null, January 2012

  • Nghiem, S. V.; Hall, D. K.; Mote, T. L.
  • Columbia University
  • DOI: 10.7916/d85m65nn

Works referencing / citing this record:

Progress and Challenges in Quantifying Wildfire Smoke Emissions, Their Properties, Transport, and Atmospheric Impacts
journal, December 2019

  • Sokolik, I. N.; Soja, A. J.; DeMott, P. J.
  • Journal of Geophysical Research: Atmospheres, Vol. 124, Issue 23
  • DOI: 10.1029/2018jd029878