DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A coordination-based model for transition metal alloy nanoparticles

Abstract

We present a simple approach for predicting the relative energies of bimetallic nanoparticles spanning a wide-ranging combinatorial space, using only the identity and nearest-neighbor coordination number of individual metal atoms as independent parameters. By performing straightforward metal atom adsorption calculations on surface slab models, we parameterize expressions for the energy of metal atoms as a function of their coordination number in 21 bimetallic pairings of fcc metals. Here, we rigorously establish the transferability of our model by predicting relative energies of a series of nanoparticles across a large number of morphologies, sizes, atomic compositions, and arrangements. The model is particularly accurate in predicting atomic rearrangements at or near the metal surfaces, which is essential for its potential applications when studying segregation phenomena or dynamic processes in heterogeneous catalysis. By rapidly forecasting site stabilities with atomic specificity across generic structural and compositional features, our model is able to reverse engineer thermodynamically feasible motifs of active sites in bimetallic nanoparticles through robust property ⇔ structure relations.

Authors:
ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [2]
  1. Stanford University; Stanford; USA; Stanford Univ., CA (United States). SUNCAT Center for Interface Science and Catalysis, Dept. of Chemical Engineering
  2. Stanford Univ., CA (United States). SUNCAT Center for Interface Science and Catalysis
Publication Date:
Research Org.:
SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1528782
Alternate Identifier(s):
OSTI ID: 1496510
Grant/Contract Number:  
AC02-76SF00515
Resource Type:
Accepted Manuscript
Journal Name:
Nanoscale
Additional Journal Information:
Journal Volume: 11; Journal Issue: 10; Journal ID: ISSN 2040-3364
Publisher:
Royal Society of Chemistry
Country of Publication:
United States
Language:
English
Subject:
77 NANOSCIENCE AND NANOTECHNOLOGY

Citation Formats

Roling, Luke T., Choksi, Tej S., and Abild-Pedersen, Frank. A coordination-based model for transition metal alloy nanoparticles. United States: N. p., 2019. Web. doi:10.1039/c9nr00959k.
Roling, Luke T., Choksi, Tej S., & Abild-Pedersen, Frank. A coordination-based model for transition metal alloy nanoparticles. United States. https://doi.org/10.1039/c9nr00959k
Roling, Luke T., Choksi, Tej S., and Abild-Pedersen, Frank. Tue . "A coordination-based model for transition metal alloy nanoparticles". United States. https://doi.org/10.1039/c9nr00959k. https://www.osti.gov/servlets/purl/1528782.
@article{osti_1528782,
title = {A coordination-based model for transition metal alloy nanoparticles},
author = {Roling, Luke T. and Choksi, Tej S. and Abild-Pedersen, Frank},
abstractNote = {We present a simple approach for predicting the relative energies of bimetallic nanoparticles spanning a wide-ranging combinatorial space, using only the identity and nearest-neighbor coordination number of individual metal atoms as independent parameters. By performing straightforward metal atom adsorption calculations on surface slab models, we parameterize expressions for the energy of metal atoms as a function of their coordination number in 21 bimetallic pairings of fcc metals. Here, we rigorously establish the transferability of our model by predicting relative energies of a series of nanoparticles across a large number of morphologies, sizes, atomic compositions, and arrangements. The model is particularly accurate in predicting atomic rearrangements at or near the metal surfaces, which is essential for its potential applications when studying segregation phenomena or dynamic processes in heterogeneous catalysis. By rapidly forecasting site stabilities with atomic specificity across generic structural and compositional features, our model is able to reverse engineer thermodynamically feasible motifs of active sites in bimetallic nanoparticles through robust property ⇔ structure relations.},
doi = {10.1039/c9nr00959k},
journal = {Nanoscale},
number = 10,
volume = 11,
place = {United States},
year = {Tue Jan 01 00:00:00 EST 2019},
month = {Tue Jan 01 00:00:00 EST 2019}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 28 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Patchy Multishell Segregation in Pd−Pt Alloy Nanoparticles
journal, April 2011

  • Barcaro, Giovanni; Fortunelli, Alessandro; Polak, Micha
  • Nano Letters, Vol. 11, Issue 4
  • DOI: 10.1021/nl200322s

Size-, Shape-, and Composition-Dependent Model for Metal Nanoparticle Stability Prediction
journal, March 2018


Predicted Trends of Core−Shell Preferences for 132 Late Transition-Metal Binary-Alloy Nanoparticles
journal, October 2009

  • Wang, Lin-Lin; Johnson, Duane D.
  • Journal of the American Chemical Society, Vol. 131, Issue 39
  • DOI: 10.1021/ja903247x

Global optimization of clusters using electronic structure methods
journal, May 2013

  • Heiles, Sven; Johnston, Roy L.
  • International Journal of Quantum Chemistry, Vol. 113, Issue 18
  • DOI: 10.1002/qua.24462

Surface segregation energies in low-index open surfaces of bimetallic transition metal alloys
journal, January 2009

  • Nilekar, Anand Udaykumar; Ruban, Andrei V.; Mavrikakis, Manos
  • Surface Science, Vol. 603, Issue 1
  • DOI: 10.1016/j.susc.2008.10.029

Adsorbate-induced segregation in a PdAg membrane model system: Pd3Ag(111)
journal, October 2012


The nature of the active site in heterogeneous metal catalysis
journal, January 2008

  • Nørskov, Jens K.; Bligaard, Thomas; Hvolbæk, Britt
  • Chemical Society Reviews, Vol. 37, Issue 10
  • DOI: 10.1039/b800260f

Fe–Ni Nanoparticles: A Multiscale First-Principles Study to Predict Geometry, Structure, and Catalytic Activity
journal, January 2017

  • Teeriniemi, Juhani; Melander, Marko; Lipasti, Saana
  • The Journal of Physical Chemistry C, Vol. 121, Issue 3
  • DOI: 10.1021/acs.jpcc.6b10926

Real-Time Ab Initio KMC Simulation of the Self-Assembly and Sintering of Bimetallic Epitaxial Nanoclusters: Au + Ag on Ag(100)
journal, June 2014

  • Han, Yong; Liu, Da-Jiang; Evans, James W.
  • Nano Letters, Vol. 14, Issue 8
  • DOI: 10.1021/nl5017128

Special points for Brillouin-zone integrations
journal, June 1976

  • Monkhorst, Hendrik J.; Pack, James D.
  • Physical Review B, Vol. 13, Issue 12, p. 5188-5192
  • DOI: 10.1103/PhysRevB.13.5188

Atom-Resolved Imaging of Dynamic Shape Changes in Supported Copper Nanocrystals
journal, March 2002


Microstructure of Bimetallic PtPd Catalysts under Oxidizing Conditions
journal, July 2013

  • Johns, Tyne R.; Gaudet, Jason R.; Peterson, Eric J.
  • ChemCatChem, Vol. 5, Issue 9
  • DOI: 10.1002/cctc.201300181

Predicting Catalytic Activity of Nanoparticles by a DFT-Aided Machine-Learning Algorithm
journal, August 2017


Segregation effects on the properties of (AuAg) 147
journal, January 2014

  • Gould, A. L.; Heard, C. J.; Logsdail, A. J.
  • Phys. Chem. Chem. Phys., Vol. 16, Issue 39
  • DOI: 10.1039/C4CP00753K

Surface Tension Effects on the Reactivity of Metal Nanoparticles
journal, September 2015

  • Li, Lin; Abild-Pedersen, Frank; Greeley, Jeff
  • The Journal of Physical Chemistry Letters, Vol. 6, Issue 19
  • DOI: 10.1021/acs.jpclett.5b01746

Structure-Sensitive Scaling Relations: Adsorption Energies from Surface Site Stability
journal, March 2018


Configurational Energies of Nanoparticles Based on Metal–Metal Coordination
journal, October 2017

  • Roling, Luke T.; Li, Lin; Abild-Pedersen, Frank
  • The Journal of Physical Chemistry C, Vol. 121, Issue 41
  • DOI: 10.1021/acs.jpcc.7b08438

Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals
journal, March 1999


Reaction-Driven Restructuring of Rh-Pd and Pt-Pd Core-Shell Nanoparticles
journal, November 2008


Surface segregation in a polycrystalline Pd70Cu30 alloy hydrogen purification membrane
journal, January 2008


Automotive exhaust catalysis
journal, May 2003


Stratified construction of neural network based interatomic models for multicomponent materials
journal, January 2017


Influence of molar ratio on Pd–Pt catalysts for methane combustion
journal, October 2006


Alloys in catalysis: phase separation and surface segregation phenomena in response to the reactive environment
journal, January 2012

  • Zafeiratos, Spiros; Piccinin, Simone; Teschner, Detre
  • Catalysis Science & Technology, Vol. 2, Issue 9
  • DOI: 10.1039/c2cy00487a

DFT study of the M segregation on MAu alloys (M=Ni, Pd, Pt) in presence of adsorbed oxygen O and O2
journal, January 2012


Modeling Segregation on AuPd(111) Surfaces with Density Functional Theory and Monte Carlo Simulations
journal, February 2017


DFT study of the structures and energetics of 98-atom AuPd clusters
journal, January 2013

  • Bruma, Alina; Ismail, Ramli; Oliver Paz-Borbón, L.
  • Nanoscale, Vol. 5, Issue 2
  • DOI: 10.1039/C2NR32517A

Finite Size Effects in Chemical Bonding: From Small Clusters to Solids
journal, June 2011


Designing bimetallic catalysts for a green and sustainable future
journal, January 2012

  • Sankar, Meenakshisundaram; Dimitratos, Nikolaos; Miedziak, Peter J.
  • Chemical Society Reviews, Vol. 41, Issue 24
  • DOI: 10.1039/c2cs35296f

Surface segregation energies in transition-metal alloys
journal, June 1999


Alloy catalysts: the concepts
journal, December 2001


Extrapolating Energetics on Clusters and Single-Crystal Surfaces to Nanoparticles by Machine-Learning Scheme
journal, November 2017

  • Jinnouchi, Ryosuke; Hirata, Hirohito; Asahi, Ryoji
  • The Journal of Physical Chemistry C, Vol. 121, Issue 47
  • DOI: 10.1021/acs.jpcc.7b08686

Structural optimization of Pt–Pd–Rh trimetallic nanoparticles using improved genetic algorithm
journal, April 2016


Optimizing core-shell nanoparticle catalysts with a genetic algorithm
journal, December 2009

  • Froemming, Nathan S.; Henkelman, Graeme
  • The Journal of Chemical Physics, Vol. 131, Issue 23
  • DOI: 10.1063/1.3272274

Modeling the Migration of Platinum Nanoparticles on Surfaces Using a Kinetic Monte Carlo Approach
journal, February 2017

  • Li, Lin; Plessow, Philipp N.; Rieger, Michael
  • The Journal of Physical Chemistry C, Vol. 121, Issue 8
  • DOI: 10.1021/acs.jpcc.6b11549

Soft self-consistent pseudopotentials in a generalized eigenvalue formalism
journal, April 1990


A semi-empirical effective medium theory for metals and alloys
journal, October 1996


Nanoalloys:  From Theory to Applications of Alloy Clusters and Nanoparticles
journal, March 2008

  • Ferrando, Riccardo; Jellinek, Julius; Johnston, Roy L.
  • Chemical Reviews, Vol. 108, Issue 3, p. 845-910
  • DOI: 10.1021/cr040090g

Dipole correction for surface supercell calculations
journal, May 1999


Investigation of Catalytic Finite-Size-Effects of Platinum Metal Clusters
journal, December 2012

  • Li, Lin; Larsen, Ask H.; Romero, Nichols A.
  • The Journal of Physical Chemistry Letters, Vol. 4, Issue 1
  • DOI: 10.1021/jz3018286

Trends in Atomic Adsorption on Pt 3 M(111) Transition Metal Bimetallic Surface Overlayers
journal, April 2014

  • Chen, Wei; Schneider, William F.; Wolverton, C.
  • The Journal of Physical Chemistry C, Vol. 118, Issue 16
  • DOI: 10.1021/jp410607k

Synergistic Catalysis over Bimetallic Alloy Nanoparticles
journal, January 2013


Bimetallic Nanocrystals: Liquid-Phase Synthesis and Catalytic Applications
journal, January 2011


A Comprehensive Search for Stable Pt–Pd Nanoalloy Configurations and Their Use as Tunable Catalysts
journal, January 2012

  • Tan, Teck L.; Wang, Lin-Lin; Johnson, Duane D.
  • Nano Letters, Vol. 12, Issue 9
  • DOI: 10.1021/nl302405k

Works referencing / citing this record:

First principles analysis of surface dependent segregation in bimetallic alloys
journal, January 2019

  • Farsi, Lida; Deskins, N. Aaron
  • Physical Chemistry Chemical Physics, Vol. 21, Issue 42
  • DOI: 10.1039/c9cp03984h

Predicting metal–metal interactions. I. The influence of strain on nanoparticle and metal adlayer stabilities
journal, March 2020

  • Streibel, Verena; Choksi, Tej S.; Abild-Pedersen, Frank
  • The Journal of Chemical Physics, Vol. 152, Issue 9
  • DOI: 10.1063/1.5130566

Predicting metal–metal interactions. II. Accelerating generalized schemes through physical insights
journal, March 2020

  • Choksi, Tej S.; Streibel, Verena; Abild-Pedersen, Frank
  • The Journal of Chemical Physics, Vol. 152, Issue 9
  • DOI: 10.1063/1.5141378