DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Genetically Engineered Elastomeric Polymer Network through Protein Zipper Assembly

Abstract

The rich palette of chemical and functional diversity found within peptides has driven the recent interest in bottom–up assembly of soft polypeptide–based materials. Herein, we describe the creation of a novel helix–elastin like polymer or HELP. HELP marries the specificity of coiled–coil interactions with the elasticity and stimuli–responsive behavior of elastin, a class of polymers with extraordinary elasticity. We used Rosetta to computationally design highly specific protein helical zippers to connect short elastin segments. As a result, the programmed pairing between the helical blocks of two individual chains produced a genetically encoded material that, when deposited on a substrate, formed a flexible and porous 2D planar network with controllable porosity that responds dynamically upon application of stimuli.

Authors:
 [1];  [1];  [1];  [1];  [1]; ORCiD logo [1]; ORCiD logo [1]
  1. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Publication Date:
Research Org.:
Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1498046
Alternate Identifier(s):
OSTI ID: 1373958
Report Number(s):
LA-UR-16-20868
Journal ID: ISSN 2365-6549
Grant/Contract Number:  
89233218CNA000001
Resource Type:
Accepted Manuscript
Journal Name:
Chemistry Select
Additional Journal Information:
Journal Volume: 2; Journal Issue: 18; Journal ID: ISSN 2365-6549
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; Material Science; Elastin like polymer; Helical zipper; Protein design; Self-assembly; Stimuli responsive polymer

Citation Formats

Fazelinia, Hossein, Balog, Eva Rose M., Desireddy, Anil, Chakraborty, Saumen, Sheehan, Chris J., Strauss, Charlie E. M., and Martinez, Jennifer S. Genetically Engineered Elastomeric Polymer Network through Protein Zipper Assembly. United States: N. p., 2017. Web. doi:10.1002/slct.201700456.
Fazelinia, Hossein, Balog, Eva Rose M., Desireddy, Anil, Chakraborty, Saumen, Sheehan, Chris J., Strauss, Charlie E. M., & Martinez, Jennifer S. Genetically Engineered Elastomeric Polymer Network through Protein Zipper Assembly. United States. https://doi.org/10.1002/slct.201700456
Fazelinia, Hossein, Balog, Eva Rose M., Desireddy, Anil, Chakraborty, Saumen, Sheehan, Chris J., Strauss, Charlie E. M., and Martinez, Jennifer S. Tue . "Genetically Engineered Elastomeric Polymer Network through Protein Zipper Assembly". United States. https://doi.org/10.1002/slct.201700456. https://www.osti.gov/servlets/purl/1498046.
@article{osti_1498046,
title = {Genetically Engineered Elastomeric Polymer Network through Protein Zipper Assembly},
author = {Fazelinia, Hossein and Balog, Eva Rose M. and Desireddy, Anil and Chakraborty, Saumen and Sheehan, Chris J. and Strauss, Charlie E. M. and Martinez, Jennifer S.},
abstractNote = {The rich palette of chemical and functional diversity found within peptides has driven the recent interest in bottom–up assembly of soft polypeptide–based materials. Herein, we describe the creation of a novel helix–elastin like polymer or HELP. HELP marries the specificity of coiled–coil interactions with the elasticity and stimuli–responsive behavior of elastin, a class of polymers with extraordinary elasticity. We used Rosetta to computationally design highly specific protein helical zippers to connect short elastin segments. As a result, the programmed pairing between the helical blocks of two individual chains produced a genetically encoded material that, when deposited on a substrate, formed a flexible and porous 2D planar network with controllable porosity that responds dynamically upon application of stimuli.},
doi = {10.1002/slct.201700456},
journal = {Chemistry Select},
number = 18,
volume = 2,
place = {United States},
year = {Tue Jul 18 00:00:00 EDT 2017},
month = {Tue Jul 18 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Figures / Tables:

Figure 1 Figure 1: Temperature responsive 2D networks of an elastomeric polymer are created using helical zippers. Schematic showing the design principal of stimuli-responsive Helix- Elastin Like Polymers (HELP) that shrinks and expands as a function of change in temperature. Although Elastin Like Polymers [ELP: (VPGIG)8] typically form insoluble coacervates with increasesmore » in temperature, addition of three flanking helices (shown as filled rectangles: each helix is 28 aa in length) linking two ELPs, changes the property of the polymer. Upon mixing of the two HELP components (chain_1 and chain_2) a programmed and dynamic assembly is formed which shrinks and expands with increase (above Tt) and decrease in temperature, respectively, giving rise to gent property of ELP.« less

Save / Share:

Works referenced in this record:

Building fibrous biomaterials from α-helical and collagen-like coiled-coil peptides
journal, January 2010


Squaring the Circle in Peptide Assembly: From Fibers to Discrete Nanostructures by de Novo Design
journal, September 2012

  • Boyle, Aimee L.; Bromley, Elizabeth H. C.; Bartlett, Gail J.
  • Journal of the American Chemical Society, Vol. 134, Issue 37
  • DOI: 10.1021/ja3053943

Design and engineering of silk fibroin scaffolds with biomimetic hierarchical structures
journal, January 2013

  • Wang, Hui; Liu, Xiang Yang; Chuah, Yon Jin
  • Chemical Communications, Vol. 49, Issue 14
  • DOI: 10.1039/c2cc38779d

Biomimetic collagen/elastin meshes for ventral hernia repair in a rat model
journal, March 2017


Calcium Binding Peptide Motifs from Calmodulin Confer Divalent Ion Selectivity to Elastin-Like Polypeptides
journal, June 2013

  • Hassouneh, Wafa; Nunalee, Michelle L.; Shelton, M. Coleman
  • Biomacromolecules, Vol. 14, Issue 7
  • DOI: 10.1021/bm400464s

Accurate design of co-assembling multi-component protein nanomaterials
journal, May 2014

  • King, Neil P.; Bale, Jacob B.; Sheffler, William
  • Nature, Vol. 510, Issue 7503
  • DOI: 10.1038/nature13404

Tunable Self-Assembly of Genetically Engineered Silk–Elastin-like Protein Polymers
journal, November 2011

  • Xia, Xiao-Xia; Xu, Qiaobing; Hu, Xiao
  • Biomacromolecules, Vol. 12, Issue 11
  • DOI: 10.1021/bm201165h

Biomimetic spinning of artificial spider silk from a chimeric minispidroin
journal, January 2017

  • Andersson, Marlene; Jia, Qiupin; Abella, Ana
  • Nature Chemical Biology, Vol. 13, Issue 3
  • DOI: 10.1038/nchembio.2269

Computational Design of Self-Assembling Protein Nanomaterials with Atomic Level Accuracy
journal, May 2012


Structural specificity in coiled-coil interactions
journal, August 2008


Biomimetic Nanofibrillation in Two-Component Biopolymer Blends with Structural Analogs to Spider Silk
journal, October 2016

  • Xie, Lan; Xu, Huan; Li, Liang-Bin
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep34572

Design of ordered two-dimensional arrays mediated by noncovalent protein-protein interfaces
journal, June 2015


Elastic protein-based polymers in soft tissue augmentation and generation
journal, January 1998

  • Urry, Dan W.; Pattanaik, Asima
  • Journal of Biomaterials Science, Polymer Edition, Vol. 9, Issue 10
  • DOI: 10.1163/156856298X00316

New currency for old rope: from coiled-coil assemblies to α-helical barrels
journal, August 2012

  • Woolfson, Derek N.; Bartlett, Gail J.; Bruning, Marc
  • Current Opinion in Structural Biology, Vol. 22, Issue 4
  • DOI: 10.1016/j.sbi.2012.03.002

The Design of Coiled-Coil Structures and Assemblies
book, January 2005


Predicting helix orientation for coiled-coil dimers
journal, May 2008

  • Apgar, James R.; Gutwin, Karl N.; Keating, Amy E.
  • Proteins: Structure, Function, and Bioinformatics, Vol. 72, Issue 3
  • DOI: 10.1002/prot.22118

Comparison between Coacervation Property and Secondary Structure of Synthetic Peptides, Ile-containing Elastin-derived Pentapeptide Repeats
journal, June 2013


Complete Recombinant Silk-Elastinlike Protein-Based Tissue Scaffold
journal, December 2010

  • Qiu, Weiguo; Huang, Yiding; Teng, Weibing
  • Biomacromolecules, Vol. 11, Issue 12
  • DOI: 10.1021/bm100469w

Biomimetic organization of collagen matrices to template bone-like microstructures
journal, May 2016


Design and application of stimulus-responsive peptide systems
journal, January 2007

  • Chockalingam, Karuppiah; Blenner, Mark; Banta, Scott
  • Protein Engineering, Design and Selection, Vol. 20, Issue 4
  • DOI: 10.1093/protein/gzm008

Modular Design in Natural and Biomimetic Soft Materials
journal, September 2011

  • Kushner, Aaron M.; Guan, Zhibin
  • Angewandte Chemie International Edition, Vol. 50, Issue 39
  • DOI: 10.1002/anie.201006496

Biomimetic Magnetic Silk Scaffolds
journal, March 2015

  • Samal, Sangram K.; Dash, Mamoni; Shelyakova, Tatiana
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 11
  • DOI: 10.1021/acsami.5b00529

New materials from proteins and peptides
journal, August 2012


Design of a single-chain polypeptide tetrahedron assembled from coiled-coil segments
journal, April 2013

  • Gradišar, Helena; Božič, Sabina; Doles, Tibor
  • Nature Chemical Biology, Vol. 9, Issue 6
  • DOI: 10.1038/nchembio.1248

Elastin: a representative ideal protein elastomer
journal, February 2002

  • Urry, D. W.; Hugel, T.; Seitz, M.
  • Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, Vol. 357, Issue 1418
  • DOI: 10.1098/rstb.2001.1023

Metal-directed, chemically tunable assembly of one-, two- and three-dimensional crystalline protein arrays
journal, March 2012

  • Brodin, Jeffrey D.; Ambroggio, X. I.; Tang, Chunyan
  • Nature Chemistry, Vol. 4, Issue 5
  • DOI: 10.1038/nchem.1290

Circular polymerase extension cloning for high-throughput cloning of complex and combinatorial DNA libraries
journal, February 2011


Directed patterning of the self-assembled silk-elastin-like nanofibers using a nanomechanical stimulus
journal, January 2012

  • Johnson, Sara; Ko, Young Koan; Varongchayakul, Nitinun
  • Chemical Communications, Vol. 48, Issue 86
  • DOI: 10.1039/c2cc35384a

Modeling structurally variable regions in homologous proteins with rosetta
journal, April 2004

  • Rohl, Carol A.; Strauss, Charlie E. M.; Chivian, Dylan
  • Proteins: Structure, Function, and Bioinformatics, Vol. 55, Issue 3
  • DOI: 10.1002/prot.10629

Computational Design of Virus-Like Protein Assemblies on Carbon Nanotube Surfaces
journal, May 2011


Semirational design of Jun-Fos coiled coils with increased affinity: Universal implications for leucine zipper prediction and design
journal, June 2006

  • Mason, J. M.; Schmitz, M. A.; Muller, K. M.
  • Proceedings of the National Academy of Sciences, Vol. 103, Issue 24
  • DOI: 10.1073/pnas.0509880103

Recombinant human elastin polypeptides self-assemble into biomaterials with elastin-like properties
journal, November 2003

  • Bellingham, Catherine M.; Lillie, Margo A.; Gosline, John M.
  • Biopolymers, Vol. 70, Issue 4
  • DOI: 10.1002/bip.10512

Switchable Elastin-Like Polypeptides that Respond to Chemical Inducers of Dimerization
journal, March 2013

  • Dhandhukia, Jugal; Weitzhandler, Isaac; Wang, Wan
  • Biomacromolecules, Vol. 14, Issue 4
  • DOI: 10.1021/bm301558q

Self-Assembling Cages from Coiled-Coil Peptide Modules
journal, April 2013


Protein Structure Prediction Using Rosetta
book, January 2004


Computational design of a protein crystal
journal, April 2012

  • Lanci, C. J.; MacDermaid, C. M.; Kang, S. -g.
  • Proceedings of the National Academy of Sciences, Vol. 109, Issue 19
  • DOI: 10.1073/pnas.1112595109

Selectional and Mutational Scope of Peptides Sequestering the Jun–Fos Coiled-Coil Domain
journal, August 2008

  • Hagemann, Urs B.; Mason, Jody M.; Müller, Kristian M.
  • Journal of Molecular Biology, Vol. 381, Issue 1
  • DOI: 10.1016/j.jmb.2008.04.030

Photoresponsive Retinal-Modified Silk–Elastin Copolymer
journal, February 2013

  • Sun, Zhongyuan; Qin, Guokui; Xia, Xiaoxia
  • Journal of the American Chemical Society, Vol. 135, Issue 9
  • DOI: 10.1021/ja312647n

LEGO-like DNA Structures
journal, November 2012


Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.