DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Ambient Electrosynthesis of Ammonia: Electrode Porosity and Composition Engineering

Abstract

Ammonia, a key precursor for fertilizer production, convenient hydrogen carrier, and emerging clean fuel, plays a pivotal role in sustaining life on Earth. Currently, the main route for NH3 synthesis is by the heterogeneous catalytic Haber–Bosch process (N2+3 H2→2 NH3), which proceeds under extreme conditions of temperature and pressure with a very large carbon footprint. Herein we report that a pristine nitrogen–doped nanoporous graphitic carbon membrane (NCM) can electrochemically convert N2 into NH3 in an acidic aqueous solution under ambient conditions. The Faradaic efficiency and rate of production of NH3 on the NCM electrode reach 5.2 % and 0.08 g m–2 h–1, respectively. Functionalization of the NCM with Au nanoparticles dramatically enhances these performance metrics to 22 % and 0.36 gm–2 h–1, respectively. In conclusion, as this system offers the potential to be scaled to industrial levels it is highly likely that it might displace the century-old Haber–Bosch process.

Authors:
 [1];  [2];  [3];  [4];  [4];  [1];  [1]; ORCiD logo [5];  [6];  [7];  [3];  [8];  [8];  [9];  [10]; ORCiD logo [4]
  1. Nankai Univ., Tianjin (People's Republic of China)
  2. Univ. of Toronto, Toronto, ON (Canada); Soochow Univ., Jiangsu (People's Republic of China)
  3. The Chinese Academy of Sciences, Taiyuan (China)
  4. Univ. of Toronto, Toronto, ON (Canada)
  5. Temple Univ., Philadelphia, PA (United States); Brookhaven National Lab. (BNL), Upton, NY (United States)
  6. Brookhaven National Lab. (BNL), Upton, NY (United States)
  7. Northwest Normal Univ., Lanzhou (People's Republic of China)
  8. Soochow Univ., Jiangsu (People's Republic of China)
  9. Stockholm Univ., Stockholm (Sweden)
  10. UNSW Australia, Sydney, NSW (Australia)
Publication Date:
Research Org.:
Brookhaven National Laboratory (BNL), Upton, NY (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1476757
Report Number(s):
BNL-209144-2018-JAAM
Journal ID: ISSN 1433-7851
Grant/Contract Number:  
SC0012704
Resource Type:
Accepted Manuscript
Journal Name:
Angewandte Chemie (International Edition)
Additional Journal Information:
Journal Name: Angewandte Chemie (International Edition); Journal Volume: 57; Journal Issue: 38; Journal ID: ISSN 1433-7851
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; electrocatalysis; functionalization; nitrogen fixation; poly(ionic liquid); porous carbon membrane

Citation Formats

Wang, Hong, Wang, Lu, Wang, Qiang, Ye, Shuyang, Sun, Wei, Shao, Yue, Jiang, Zhiping, Qiao, Qiao, Zhu, Yimei, Song, Pengfei, Li, Debao, He, Le, Zhang, Xiaohong, Yuan, Jiayin, Wu, Tom, and Ozin, Geoffrey A. Ambient Electrosynthesis of Ammonia: Electrode Porosity and Composition Engineering. United States: N. p., 2018. Web. doi:10.1002/anie.201805514.
Wang, Hong, Wang, Lu, Wang, Qiang, Ye, Shuyang, Sun, Wei, Shao, Yue, Jiang, Zhiping, Qiao, Qiao, Zhu, Yimei, Song, Pengfei, Li, Debao, He, Le, Zhang, Xiaohong, Yuan, Jiayin, Wu, Tom, & Ozin, Geoffrey A. Ambient Electrosynthesis of Ammonia: Electrode Porosity and Composition Engineering. United States. https://doi.org/10.1002/anie.201805514
Wang, Hong, Wang, Lu, Wang, Qiang, Ye, Shuyang, Sun, Wei, Shao, Yue, Jiang, Zhiping, Qiao, Qiao, Zhu, Yimei, Song, Pengfei, Li, Debao, He, Le, Zhang, Xiaohong, Yuan, Jiayin, Wu, Tom, and Ozin, Geoffrey A. Wed . "Ambient Electrosynthesis of Ammonia: Electrode Porosity and Composition Engineering". United States. https://doi.org/10.1002/anie.201805514. https://www.osti.gov/servlets/purl/1476757.
@article{osti_1476757,
title = {Ambient Electrosynthesis of Ammonia: Electrode Porosity and Composition Engineering},
author = {Wang, Hong and Wang, Lu and Wang, Qiang and Ye, Shuyang and Sun, Wei and Shao, Yue and Jiang, Zhiping and Qiao, Qiao and Zhu, Yimei and Song, Pengfei and Li, Debao and He, Le and Zhang, Xiaohong and Yuan, Jiayin and Wu, Tom and Ozin, Geoffrey A.},
abstractNote = {Ammonia, a key precursor for fertilizer production, convenient hydrogen carrier, and emerging clean fuel, plays a pivotal role in sustaining life on Earth. Currently, the main route for NH3 synthesis is by the heterogeneous catalytic Haber–Bosch process (N2+3 H2→2 NH3), which proceeds under extreme conditions of temperature and pressure with a very large carbon footprint. Herein we report that a pristine nitrogen–doped nanoporous graphitic carbon membrane (NCM) can electrochemically convert N2 into NH3 in an acidic aqueous solution under ambient conditions. The Faradaic efficiency and rate of production of NH3 on the NCM electrode reach 5.2 % and 0.08 g m–2 h–1, respectively. Functionalization of the NCM with Au nanoparticles dramatically enhances these performance metrics to 22 % and 0.36 gm–2 h–1, respectively. In conclusion, as this system offers the potential to be scaled to industrial levels it is highly likely that it might displace the century-old Haber–Bosch process.},
doi = {10.1002/anie.201805514},
journal = {Angewandte Chemie (International Edition)},
number = 38,
volume = 57,
place = {United States},
year = {Wed Jun 20 00:00:00 EDT 2018},
month = {Wed Jun 20 00:00:00 EDT 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 136 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: a)-c), Scheme illustrating the synthetic route to the NCM. Image (a) depicts a homogeneous dispersion of CNTs in a solution of PCMVImTf2N and PAA in DMF; Image (b) is a PCMVImTf2N/PAA/CNT hybrid membrane; Image (c) is a NCM prepared from pyrolysis of sample in (b); d), SEM imagemore » of the top surface of the NCM. e), f), Low- and high-magnification cross-section SEM images of the NCM, respectively. g, a HRTEM image of NCM. h), a single native CNT. i), the core-shell structure of a CNT-NC heterojunction. The yellow arrow directed area represents N-doped carbon sheath attached to a CNT.« less

Save / Share:

Works referenced in this record:

Ammonia Synthesis at Atmospheric Pressure
journal, October 1998


Photo-illuminated diamond as a solid-state source of solvated electrons in water for nitrogen reduction
journal, June 2013

  • Zhu, Di; Zhang, Linghong; Ruther, Rose E.
  • Nature Materials, Vol. 12, Issue 9
  • DOI: 10.1038/nmat3696

Recent progress towards the electrosynthesis of ammonia from sustainable resources
journal, May 2017


Supported metal nanoparticles on porous materials. Methods and applications
journal, January 2009

  • White, Robin J.; Luque, Rafael; Budarin, Vitaliy L.
  • Chem. Soc. Rev., Vol. 38, Issue 2
  • DOI: 10.1039/B802654H

Progress in the Electrochemical Synthesis of Ammonia
journal, May 2017


Single Nanocrystals of Platinum Prepared by Partial Dissolution of Au-Pt Nanoalloys
journal, January 2009


Complete nitrification by a single microorganism
journal, November 2015

  • van Kessel, Maartje A. H. J.; Speth, Daan R.; Albertsen, Mads
  • Nature, Vol. 528, Issue 7583
  • DOI: 10.1038/nature16459

Ammonia Electrosynthesis with High Selectivity under Ambient Conditions via a Li + Incorporation Strategy
journal, July 2017

  • Chen, Gao-Feng; Cao, Xinrui; Wu, Shunqing
  • Journal of the American Chemical Society, Vol. 139, Issue 29
  • DOI: 10.1021/jacs.7b04393

Electroreduction of nitrogen to ammonia on gas-diffusion electrodes loaded with inorganic catalyst
journal, September 1990

  • Furuya, Nagakazu; Yoshiba, Hiroshi
  • Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, Vol. 291, Issue 1-2
  • DOI: 10.1016/0022-0728(90)87195-P

Efficient Electrocatalytic Reduction of CO 2 by Nitrogen-Doped Nanoporous Carbon/Carbon Nanotube Membranes: A Step Towards the Electrochemical CO 2 Refinery
journal, June 2017

  • Wang, Hong; Jia, Jia; Song, Pengfei
  • Angewandte Chemie International Edition, Vol. 56, Issue 27
  • DOI: 10.1002/anie.201703720

Entrapping an Ionic Liquid with Nanocarbon: The Formation of a Tailorable and Functional Surface
journal, November 2014


Agricultural sustainability and intensive production practices
journal, August 2002

  • Tilman, David; Cassman, Kenneth G.; Matson, Pamela A.
  • Nature, Vol. 418, Issue 6898
  • DOI: 10.1038/nature01014

Double Stimuli-Responsive Copolymer Stabilizers for Multiwalled Carbon Nanotubes
journal, November 2011

  • Soll, Sebastian; Antonietti, Markus; Yuan, Jiayin
  • ACS Macro Letters, Vol. 1, Issue 1
  • DOI: 10.1021/mz200042h

The Challenge of Electrochemical Ammonia Synthesis: A New Perspective on the Role of Nitrogen Scaling Relations
journal, June 2015

  • Montoya, Joseph H.; Tsai, Charlie; Vojvodic, Aleksandra
  • ChemSusChem, Vol. 8, Issue 13
  • DOI: 10.1002/cssc.201500322

Catalysis of the electrochemical reduction of carbon dioxide
journal, January 2013

  • Costentin, Cyrille; Robert, Marc; Savéant, Jean-Michel
  • Chem. Soc. Rev., Vol. 42, Issue 6
  • DOI: 10.1039/C2CS35360A

Entrapping an Ionic Liquid with Nanocarbon: The Formation of a Tailorable and Functional Surface
journal, November 2014

  • Ding, Yuxiao; Sun, Xiaoyan; Zhang, Liyun
  • Angewandte Chemie International Edition, Vol. 54, Issue 1
  • DOI: 10.1002/anie.201408201

Rational design of electrocatalysts and photo(electro)catalysts for nitrogen reduction to ammonia (NH 3 ) under ambient conditions
journal, January 2018

  • Guo, Chunxian; Ran, Jingrun; Vasileff, Anthony
  • Energy & Environmental Science, Vol. 11, Issue 1
  • DOI: 10.1039/C7EE02220D

Single Mo Atom Supported on Defective Boron Nitride Monolayer as an Efficient Electrocatalyst for Nitrogen Fixation: A Computational Study
journal, August 2017

  • Zhao, Jingxiang; Chen, Zhongfang
  • Journal of the American Chemical Society, Vol. 139, Issue 36
  • DOI: 10.1021/jacs.7b05213

Exploring the active sites of nitrogen-doped graphene as catalysts for the oxygen reduction reaction
journal, September 2014


Ammonia Synthesis from First-Principles Calculations
journal, January 2005


Ambient nitrogen reduction cycle using a hybrid inorganic–biological system
journal, June 2017

  • Liu, Chong; Sakimoto, Kelsey K.; Colón, Brendan C.
  • Proceedings of the National Academy of Sciences, Vol. 114, Issue 25
  • DOI: 10.1073/pnas.1706371114

Challenges in reduction of dinitrogen by proton and electron transfer
journal, January 2014

  • van der Ham, Cornelis J. M.; Koper, Marc T. M.; Hetterscheid, Dennis G. H.
  • Chem. Soc. Rev., Vol. 43, Issue 15
  • DOI: 10.1039/C4CS00085D

Ammonia synthesis by N2 and steam electrolysis in molten hydroxide suspensions of nanoscale Fe2O3
journal, August 2014


Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel
journal, January 2016


Light-driven dinitrogen reduction catalyzed by a CdS:nitrogenase MoFe protein biohybrid
journal, April 2016


Synthesis of ammonia directly from air and water at ambient temperature and pressure
journal, January 2013

  • Lan, Rong; Irvine, John T. S.; Tao, Shanwen
  • Scientific Reports, Vol. 3, Issue 1
  • DOI: 10.1038/srep01145

Metal nanoparticles at mesoporous N-doped carbons and carbon nitrides: functional Mott–Schottky heterojunctions for catalysis
journal, January 2013

  • Li, Xin-Hao; Antonietti, Markus
  • Chemical Society Reviews, Vol. 42, Issue 16
  • DOI: 10.1039/c3cs60067j

Ammonia Synthesis from First-Principles Calculations.
journal, April 2005


Bismuth-Based Free-Standing Electrodes for Ambient-Condition Ammonia Production in Neutral Media
journal, June 2020


Works referencing / citing this record:

Tuning the Catalytic Preference of Ruthenium Catalysts for Nitrogen Reduction by Atomic Dispersion
journal, November 2019


Adsorbing and Activating N 2 on Heterogeneous Au–Fe 3 O 4 Nanoparticles for N 2 Fixation
journal, November 2019

  • Zhang, Jin; Ji, Yujin; Wang, Pengtang
  • Advanced Functional Materials, Vol. 30, Issue 4
  • DOI: 10.1002/adfm.201906579

Emerging Functional Porous Polymeric and Carbonaceous Materials for Environmental Treatment and Energy Storage
journal, November 2019

  • Zheng, Bingna; Lin, Xidong; Zhang, Xingcai
  • Advanced Functional Materials, Vol. 30, Issue 41
  • DOI: 10.1002/adfm.201907006

Carbon‐Based Metal‐Free Catalysts for Electrocatalytic Reduction of Nitrogen for Synthesis of Ammonia at Ambient Conditions
journal, January 2019


Atomic Modulation, Structural Design, and Systematic Optimization for Efficient Electrochemical Nitrogen Reduction
journal, January 2020


High Efficiency Electrochemical Nitrogen Fixation Achieved with a Lower Pressure Reaction System by Changing the Chemical Equilibrium
journal, September 2019


Ammonia Synthesis Under Ambient Conditions: Selective Electroreduction of Dinitrogen to Ammonia on Black Phosphorus Nanosheets
journal, January 2019

  • Zhang, Lili; Ding, Liang-Xin; Chen, Gao-Feng
  • Angewandte Chemie International Edition, Vol. 58, Issue 9
  • DOI: 10.1002/anie.201813174

High Efficiency Electrochemical Nitrogen Fixation Achieved with a Lower Pressure Reaction System by Changing the Chemical Equilibrium
journal, September 2019

  • Cheng, Hui; Cui, Peixin; Wang, Fangrui
  • Angewandte Chemie International Edition, Vol. 58, Issue 43
  • DOI: 10.1002/anie.201910658

Ambient Electrosynthesis of Ammonia on a Core–Shell‐Structured Au@CeO 2 Catalyst: Contribution of Oxygen Vacancies in CeO 2
journal, March 2019

  • Liu, Guoqiang; Cui, Zhiqing; Han, Miaomiao
  • Chemistry – A European Journal, Vol. 25, Issue 23
  • DOI: 10.1002/chem.201806377

Advanced Non‐metallic Catalysts for Electrochemical Nitrogen Reduction under Ambient Conditions
journal, July 2019

  • Zhang, Lili; Chen, Gao‐Feng; Ding, Liang‐Xin
  • Chemistry – A European Journal, Vol. 25, Issue 54
  • DOI: 10.1002/chem.201901668

S‐Doped Carbon Nanospheres: An Efficient Electrocatalyst toward Artificial N 2 Fixation to NH 3
journal, October 2018


Advances in Electrocatalytic N 2 Reduction—Strategies to Tackle the Selectivity Challenge
journal, October 2018


Recent Progress on Electrocatalyst and Photocatalyst Design for Nitrogen Reduction
journal, October 2018


Atomically Dispersed Single Ni Site Catalysts for Nitrogen Reduction toward Electrochemical Ammonia Synthesis Using N 2 and H 2 O
journal, February 2020


3D Hierarchical Porous Graphene-Based Energy Materials: Synthesis, Functionalization, and Application in Energy Storage and Conversion
journal, March 2019


A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements
journal, May 2019


Materials for electrochemical ammonia synthesis
journal, January 2019

  • McPherson, Ian James; Sudmeier, Tim; Fellowes, Joshua
  • Dalton Transactions, Vol. 48, Issue 5
  • DOI: 10.1039/c8dt04019b

Defect engineering in earth-abundant electrocatalysts for CO 2 and N 2 reduction
journal, January 2019

  • Wang, Qichen; Lei, Yongpeng; Wang, Dingsheng
  • Energy & Environmental Science, Vol. 12, Issue 6
  • DOI: 10.1039/c8ee03781g

Recent progress in electrocatalytic nitrogen reduction
journal, January 2019

  • Guo, Xiaoxi; Du, Huitong; Qu, Fengli
  • Journal of Materials Chemistry A, Vol. 7, Issue 8
  • DOI: 10.1039/c8ta11201k

B 4 C nanosheets decorated with in situ -derived boron-doped graphene quantum dots for high-efficiency ambient N 2 fixation
journal, January 2019

  • Qiu, Wei-Bin; Luo, Yu-Xi; Liang, Ru-Ping
  • Chemical Communications, Vol. 55, Issue 51
  • DOI: 10.1039/c9cc03413g

Excavated cubic platinum–iridium alloy nanocrystals with high-index facets as highly efficient electrocatalysts in N 2 fixation to NH 3
journal, January 2019

  • Mao, Yu-Jie; Wei, Lu; Zhao, Xin-Sheng
  • Chemical Communications, Vol. 55, Issue 63
  • DOI: 10.1039/c9cc04034j

Boron and nitrogen dual-doped carbon nanospheres for efficient electrochemical reduction of N 2 to NH 3
journal, January 2020

  • Xiao, Shenglin; Luo, Fang; Hu, Hao
  • Chemical Communications, Vol. 56, Issue 3
  • DOI: 10.1039/c9cc07708a

Electrochemical nitrogen fixation and utilization: theories, advanced catalyst materials and system design
journal, January 2019

  • Guo, Wenhan; Zhang, Kexin; Liang, Zibin
  • Chemical Society Reviews, Vol. 48, Issue 24
  • DOI: 10.1039/c9cs00159j

MoP supported on reduced graphene oxide for high performance electrochemical nitrogen reduction
journal, January 2020

  • Zhou, Yan; Yu, Xinping; Sun, Fengchao
  • Dalton Transactions, Vol. 49, Issue 4
  • DOI: 10.1039/c9dt04441h

Promoting photocatalytic nitrogen fixation with alkali metal cations and plasmonic nanocrystals
journal, January 2019

  • Bu, Tong-An; Hao, Yu-Chen; Gao, Wen-Yan
  • Nanoscale, Vol. 11, Issue 20
  • DOI: 10.1039/c9nr02502b

Efficient electrocatalytic conversion of N 2 to NH 3 on NiWO 4 under ambient conditions
journal, January 2020

  • Wang, Jia; Jang, Haeseong; Li, Guangkai
  • Nanoscale, Vol. 12, Issue 3
  • DOI: 10.1039/c9nr08777j

Pt-embedded in monolayer g-C 3 N 4 as a promising single-atom electrocatalyst for ammonia synthesis
journal, January 2019

  • Yin, Hui; Li, Shu-Long; Gan, Li-Yong
  • Journal of Materials Chemistry A, Vol. 7, Issue 19
  • DOI: 10.1039/c9ta01624d

Ambient dinitrogen electrocatalytic reduction for ammonia synthesis
journal, January 2019

  • Chen, Aling; Xia, Bao Yu
  • Journal of Materials Chemistry A, Vol. 7, Issue 41
  • DOI: 10.1039/c9ta05505c

Atomically dispersed metal dimer species with selective catalytic activity for nitrogen electrochemical reduction
journal, January 2019

  • Li, Yang; Zhang, Qi; Li, Can
  • Journal of Materials Chemistry A, Vol. 7, Issue 39
  • DOI: 10.1039/c9ta07845b

Electrochemical reduction of N 2 to ammonia on Co single atom embedded N-doped porous carbon under ambient conditions
journal, January 2019

  • Liu, Yanming; Xu, Qi; Fan, Xinfei
  • Journal of Materials Chemistry A, Vol. 7, Issue 46
  • DOI: 10.1039/c9ta10382a

Aqueous electrocatalytic N 2 reduction for ambient NH 3 synthesis: recent advances in catalyst development and performance improvement
journal, January 2020

  • Zhu, Xiaojuan; Mou, Shiyong; Peng, Qiling
  • Journal of Materials Chemistry A, Vol. 8, Issue 4
  • DOI: 10.1039/c9ta13044f

Ammonia Synthesis Under Ambient Conditions: Selective Electroreduction of Dinitrogen to Ammonia on Black Phosphorus Nanosheets
journal, January 2019

  • Zhang, Lili; Ding, Liang‐Xin; Chen, Gao‐Feng
  • Angewandte Chemie, Vol. 131, Issue 9
  • DOI: 10.1002/ange.201813174

Electrochemical Synthesis of Ammonia: Recent Efforts and Future Outlook
journal, August 2019

  • Garagounis, Ioannis; Vourros, Anastasios; Stoukides, Demetrios
  • Membranes, Vol. 9, Issue 9, 112
  • DOI: 10.3390/membranes9090112

Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.