DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Pathways Following Electron Injection: Medium Effects and Cross-Surface Electron Transfer in a Ruthenium-Based, Chromophore–Catalyst Assembly on TiO2

Abstract

Interfacial dynamics following photoexcitation of the water oxidation assembly [((PO3H2)2bpy)2RuII(bpy-bimpy)RuII(tpy)(OH2)]4+, -[RuaII–RubII–OH2]4+, on nanocrystalline TiO2 electrodes, starting from either -[RuaII–RubII–OH2]4+ or -[RuaII–RubIII–OH2]5+, have been investigated. Transient absorption measurements for TiO2–[RuaII–RubII–OH2]4+ in 0.1 M HPF6 or neat trifluoroethanol reveal that electron injection occurs with high efficiency but that hole transfer to the catalyst, which occurs on the electrochemical time scale, is inhibited by local environmental effects. Back electron transfer occurs to the oxidized chromophore on the microsecond time scale. Photoexcitation of the once-oxidized assembly, TiO2–[RuaII–RubIII–OH2]5+, in a variety of media, generates -[RuaIII–RubIII–OH2]6+. The injected electron randomly migrates through the surface oxide structure reducing an unreacted -[RuaII–RubIII–OH2]5+ assembly to -[RuaII–RubII–OH2]4+. In a parallel reaction, -[RuaIII–RubIII–OH2]6+ formed by electron injection undergoes proton loss giving -[RuaII–RubIV$$=$$O]4+ with possible conversion to -[RuaII–RubII–OH2]4+ by an electrolyte-mediated reaction. In the following slow step, re-equilibration on the surface occurs either by reaction with added FeIII/II or by cross-surface electron transfer between spatially separated -[RuaII–RubIV$$=$$O]4+ and -[RuaII–RubII–OH2]4+ assemblies to give -[RuaII–RubIII–OH2]5+ with a half-time of t1/2 ~ 68 μs. Finally, these results and analyses show that the transient surface behavior of the assembly and cross-surface reactions play important roles in producing and storing redox equivalents on the surface that are used for water oxidation.

Authors:
ORCiD logo [1];  [1];  [1];  [2];  [1];  [1];  [1]; ORCiD logo [3];  [1]; ORCiD logo [4];  [1]; ORCiD logo [1]; ORCiD logo [1]
  1. Univ. of North Carolina, Chapel Hill, NC (United States). Dept. of Chemistry
  2. Univ. of North Carolina, Chapel Hill, NC (United States). Dept. of Chemistry; Univ. of Richmond, VA (United States). Dept. of Chemistry
  3. Univ. of North Carolina, Chapel Hill, NC (United States). Dept. of Chemistry; Chinese Academy of Sciences (CAS), Beijing (China). Inst. of Chemistry, Beijing National Lab. for Molecular Sciences, Lab. of Photochemistry
  4. Univ. of North Carolina, Chapel Hill, NC (United States). Dept. of Chemistry; Brookhaven National Lab. (BNL), Upton, NY (United States). Dept. of Chemistry
Publication Date:
Research Org.:
Energy Frontier Research Centers (EFRC) (United States). Center for Solar Fuels (UNC EFRC)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1470650
Grant/Contract Number:  
SC0001011
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Physical Chemistry. C
Additional Journal Information:
Journal Volume: 122; Journal Issue: 24; Related Information: UNC partners with University of North Carolina (lead); Duke University; University of Florida; Georgia Institute of Technology; University; North Carolina Central University; Research Triangle Institute; Journal ID: ISSN 1932-7447
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; catalysis (homogeneous); catalysis (heterogeneous); solar (photovoltaic); solar (fuels); photosynthesis (natural and artificial); hydrogen and fuel cells; electrodes - solar; charge transport; materials and chemistry by design; synthesis (novel materials); synthesis (self-assembly)

Citation Formats

Brennaman, M. Kyle, Gish, Melissa K., Alibabaei, Leila, Norris, Michael R., Binstead, Robert A., Nayak, Animesh, Lapides, Alexander M., Song, Wenjing, Brown, Robert J., Concepcion, Javier J., Templeton, Joseph L., Papanikolas, John M., and Meyer, Thomas J. Pathways Following Electron Injection: Medium Effects and Cross-Surface Electron Transfer in a Ruthenium-Based, Chromophore–Catalyst Assembly on TiO2. United States: N. p., 2018. Web. doi:10.1021/acs.jpcc.8b04837.
Brennaman, M. Kyle, Gish, Melissa K., Alibabaei, Leila, Norris, Michael R., Binstead, Robert A., Nayak, Animesh, Lapides, Alexander M., Song, Wenjing, Brown, Robert J., Concepcion, Javier J., Templeton, Joseph L., Papanikolas, John M., & Meyer, Thomas J. Pathways Following Electron Injection: Medium Effects and Cross-Surface Electron Transfer in a Ruthenium-Based, Chromophore–Catalyst Assembly on TiO2. United States. https://doi.org/10.1021/acs.jpcc.8b04837
Brennaman, M. Kyle, Gish, Melissa K., Alibabaei, Leila, Norris, Michael R., Binstead, Robert A., Nayak, Animesh, Lapides, Alexander M., Song, Wenjing, Brown, Robert J., Concepcion, Javier J., Templeton, Joseph L., Papanikolas, John M., and Meyer, Thomas J. Fri . "Pathways Following Electron Injection: Medium Effects and Cross-Surface Electron Transfer in a Ruthenium-Based, Chromophore–Catalyst Assembly on TiO2". United States. https://doi.org/10.1021/acs.jpcc.8b04837. https://www.osti.gov/servlets/purl/1470650.
@article{osti_1470650,
title = {Pathways Following Electron Injection: Medium Effects and Cross-Surface Electron Transfer in a Ruthenium-Based, Chromophore–Catalyst Assembly on TiO2},
author = {Brennaman, M. Kyle and Gish, Melissa K. and Alibabaei, Leila and Norris, Michael R. and Binstead, Robert A. and Nayak, Animesh and Lapides, Alexander M. and Song, Wenjing and Brown, Robert J. and Concepcion, Javier J. and Templeton, Joseph L. and Papanikolas, John M. and Meyer, Thomas J.},
abstractNote = {Interfacial dynamics following photoexcitation of the water oxidation assembly [((PO3H2)2bpy)2RuII(bpy-bimpy)RuII(tpy)(OH2)]4+, -[RuaII–RubII–OH2]4+, on nanocrystalline TiO2 electrodes, starting from either -[RuaII–RubII–OH2]4+ or -[RuaII–RubIII–OH2]5+, have been investigated. Transient absorption measurements for TiO2–[RuaII–RubII–OH2]4+ in 0.1 M HPF6 or neat trifluoroethanol reveal that electron injection occurs with high efficiency but that hole transfer to the catalyst, which occurs on the electrochemical time scale, is inhibited by local environmental effects. Back electron transfer occurs to the oxidized chromophore on the microsecond time scale. Photoexcitation of the once-oxidized assembly, TiO2–[RuaII–RubIII–OH2]5+, in a variety of media, generates -[RuaIII–RubIII–OH2]6+. The injected electron randomly migrates through the surface oxide structure reducing an unreacted -[RuaII–RubIII–OH2]5+ assembly to -[RuaII–RubII–OH2]4+. In a parallel reaction, -[RuaIII–RubIII–OH2]6+ formed by electron injection undergoes proton loss giving -[RuaII–RubIV$=$O]4+ with possible conversion to -[RuaII–RubII–OH2]4+ by an electrolyte-mediated reaction. In the following slow step, re-equilibration on the surface occurs either by reaction with added FeIII/II or by cross-surface electron transfer between spatially separated -[RuaII–RubIV$=$O]4+ and -[RuaII–RubII–OH2]4+ assemblies to give -[RuaII–RubIII–OH2]5+ with a half-time of t1/2 ~ 68 μs. Finally, these results and analyses show that the transient surface behavior of the assembly and cross-surface reactions play important roles in producing and storing redox equivalents on the surface that are used for water oxidation.},
doi = {10.1021/acs.jpcc.8b04837},
journal = {Journal of Physical Chemistry. C},
number = 24,
volume = 122,
place = {United States},
year = {Fri Jun 08 00:00:00 EDT 2018},
month = {Fri Jun 08 00:00:00 EDT 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 10 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Solar Energy Supply and Storage for the Legacy and Nonlegacy Worlds
journal, November 2010

  • Cook, Timothy R.; Dogutan, Dilek K.; Reece, Steven Y.
  • Chemical Reviews, Vol. 110, Issue 11
  • DOI: 10.1021/cr100246c

Powering the planet: Chemical challenges in solar energy utilization
journal, October 2006

  • Lewis, N. S.; Nocera, D. G.
  • Proceedings of the National Academy of Sciences, Vol. 103, Issue 43, p. 15729-15735
  • DOI: 10.1073/pnas.0603395103

Applications of metal oxide materials in dye sensitized photoelectrosynthesis cells for making solar fuels: let the molecules do the work
journal, January 2013

  • Alibabaei, Leila; Luo, Hanlin; House, Ralph L.
  • Journal of Materials Chemistry A, Vol. 1, Issue 13
  • DOI: 10.1039/c2ta00935h

Interfacial Dynamics and Solar Fuel Formation in Dye-Sensitized Photoelectrosynthesis Cells
journal, June 2012

  • Song, Wenjing; Chen, Zuofeng; Glasson, Christopher R. K.
  • ChemPhysChem, Vol. 13, Issue 12
  • DOI: 10.1002/cphc.201200100

Chemical approaches to artificial photosynthesis
journal, September 2012

  • Concepcion, J. J.; House, R. L.; Papanikolas, J. M.
  • Proceedings of the National Academy of Sciences, Vol. 109, Issue 39
  • DOI: 10.1073/pnas.1212254109

Chemical approaches to artificial photosynthesis
journal, May 1989


Chemical Approaches to Artificial Photosynthesis. 2
journal, October 2005

  • Alstrum-Acevedo, James H.; Brennaman, M. Kyle; Meyer, Thomas J.
  • Inorganic Chemistry, Vol. 44, Issue 20
  • DOI: 10.1021/ic050904r

Making Oxygen with Ruthenium Complexes
journal, December 2009

  • Concepcion, Javier J.; Jurss, Jonah W.; Brennaman, M. Kyle
  • Accounts of Chemical Research, Vol. 42, Issue 12
  • DOI: 10.1021/ar9001526

Visible Light Water Splitting Using Dye-Sensitized Oxide Semiconductors
journal, December 2009

  • Youngblood, W. Justin; Lee, Seung-Hyun Anna; Maeda, Kazuhiko
  • Accounts of Chemical Research, Vol. 42, Issue 12
  • DOI: 10.1021/ar9002398

Powering the future of molecular artificial photosynthesis with light-harvesting metallosupramolecular dye assemblies
journal, January 2013

  • Frischmann, Peter D.; Mahata, Kingsuk; Würthner, Frank
  • Chem. Soc. Rev., Vol. 42, Issue 4
  • DOI: 10.1039/C2CS35223K

A Molecular Light-Driven Water Oxidation Catalyst
journal, June 2012

  • Kaveevivitchai, Nattawut; Chitta, Raghu; Zong, Ruifa
  • Journal of the American Chemical Society, Vol. 134, Issue 26
  • DOI: 10.1021/ja300797g

Towards A Solar Fuel Device: Light-Driven Water Oxidation Catalyzed by a Supramolecular Assembly
journal, January 2012

  • Li, Fei; Jiang, Yi; Zhang, Biaobiao
  • Angewandte Chemie International Edition, Vol. 51, Issue 10
  • DOI: 10.1002/anie.201108051

Component Analysis of Dyads Designed for Light-Driven Water Oxidation
journal, December 2013

  • Kohler, Lars; Kaveevivitchai, Nattawut; Zong, Ruifa
  • Inorganic Chemistry, Vol. 53, Issue 2
  • DOI: 10.1021/ic4022905

Visible Light-Driven Water Splitting in Photoelectrochemical Cells with Supramolecular Catalysts on Photoanodes
journal, May 2014

  • Ding, Xin; Gao, Yan; Zhang, Linlin
  • ACS Catalysis, Vol. 4, Issue 7
  • DOI: 10.1021/cs500518k

Finding the Way to Solar Fuels with Dye-Sensitized Photoelectrosynthesis Cells
journal, September 2016

  • Brennaman, M. Kyle; Dillon, Robert J.; Alibabaei, Leila
  • Journal of the American Chemical Society, Vol. 138, Issue 40
  • DOI: 10.1021/jacs.6b06466

Catalytic and Surface-Electrocatalytic Water Oxidation by Redox Mediator-Catalyst Assemblies
journal, November 2009

  • Concepcion, Javier J.; Jurss, Jonah W.; Hoertz, Paul G.
  • Angewandte Chemie International Edition, Vol. 48, Issue 50
  • DOI: 10.1002/anie.200901279

Low-Overpotential Water Oxidation by a Surface-Bound Ruthenium-Chromophore-Ruthenium-Catalyst Assembly
journal, November 2013

  • Norris, Michael R.; Concepcion, Javier J.; Fang, Zhen
  • Angewandte Chemie International Edition, Vol. 52, Issue 51
  • DOI: 10.1002/anie.201305951

Redox Mediator Effect on Water Oxidation in a Ruthenium-Based Chromophore–Catalyst Assembly
journal, January 2013

  • Norris, Michael R.; Concepcion, Javier J.; Harrison, Daniel P.
  • Journal of the American Chemical Society, Vol. 135, Issue 6
  • DOI: 10.1021/ja311645d

Solar water splitting in a molecular photoelectrochemical cell
journal, November 2013

  • Alibabaei, L.; Brennaman, M. K.; Norris, M. R.
  • Proceedings of the National Academy of Sciences, Vol. 110, Issue 50
  • DOI: 10.1073/pnas.1319628110

Self-Assembled Bilayers on Indium–Tin Oxide (SAB-ITO) Electrodes: A Design for Chromophore–Catalyst Photoanodes
journal, August 2012

  • Glasson, Christopher R. K.; Song, Wenjing; Ashford, Dennis L.
  • Inorganic Chemistry, Vol. 51, Issue 16
  • DOI: 10.1021/ic300636w

An Amide-Linked Chromophore–Catalyst Assembly for Water Oxidation
journal, June 2012

  • Ashford, Dennis L.; Stewart, David J.; Glasson, Christopher R.
  • Inorganic Chemistry, Vol. 51, Issue 12
  • DOI: 10.1021/ic300061u

Photoinduced Electron Transfer in a Chromophore–Catalyst Assembly Anchored to TiO 2
journal, November 2012

  • Ashford, Dennis L.; Song, Wenjing; Concepcion, Javier J.
  • Journal of the American Chemical Society, Vol. 134, Issue 46
  • DOI: 10.1021/ja3084362

Photoinduced Stepwise Oxidative Activation of a Chromophore–Catalyst Assembly on TiO 2
journal, June 2011

  • Song, Wenjing; Glasson, Christopher R. K.; Luo, Hanlin
  • The Journal of Physical Chemistry Letters, Vol. 2, Issue 14
  • DOI: 10.1021/jz200773r

Photophysical Characterization of a Helical Peptide Chromophore–Water Oxidation Catalyst Assembly on a Semiconductor Surface Using Ultrafast Spectroscopy
journal, March 2014

  • Bettis, Stephanie E.; Ryan, Derek M.; Gish, Melissa K.
  • The Journal of Physical Chemistry C, Vol. 118, Issue 12
  • DOI: 10.1021/jp410646u

Self-Assembled Bilayer Films of Ruthenium(II)/Polypyridyl Complexes through Layer-by-Layer Deposition on Nanostructured Metal Oxides
journal, November 2012

  • Hanson, Kenneth; Torelli, Daniel A.; Vannucci, Aaron K.
  • Angewandte Chemie International Edition, Vol. 51, Issue 51
  • DOI: 10.1002/anie.201206882

Watching Photoactivation in a Ru(II) Chromophore–Catalyst Assembly on TiO 2 by Ultrafast Spectroscopy
journal, November 2013

  • Wang, Li; Ashford, Dennis L.; Thompson, David W.
  • The Journal of Physical Chemistry C, Vol. 117, Issue 46
  • DOI: 10.1021/jp410571x

Visible photoelectrochemical water splitting into H 2 and O 2 in a dye-sensitized photoelectrosynthesis cell
journal, April 2015

  • Alibabaei, Leila; Sherman, Benjamin D.; Norris, Michael R.
  • Proceedings of the National Academy of Sciences, Vol. 112, Issue 19
  • DOI: 10.1073/pnas.1506111112

Driving Force Dependent, Photoinduced Electron Transfer at Degenerately Doped, Optically Transparent Semiconductor Nanoparticle Interfaces
journal, November 2014

  • Farnum, Byron H.; Morseth, Zachary A.; Brennaman, M. Kyle
  • Journal of the American Chemical Society, Vol. 136, Issue 45
  • DOI: 10.1021/ja508862h

High-Efficiency Organic-Dye- Sensitized Solar Cells Controlled by Nanocrystalline-TiO2 Electrode Thickness
journal, May 2006

  • Ito, S.; Zakeeruddin, S. M.; Humphry-Baker, R.
  • Advanced Materials, Vol. 18, Issue 9
  • DOI: 10.1002/adma.200502540

Efficient Lateral Electron Transport inside a Monolayer of Aromatic Amines Anchored on Nanocrystalline Metal Oxide Films
journal, February 1998

  • Bonhôte, Pierre; Gogniat, Eric; Tingry, Sophie
  • The Journal of Physical Chemistry B, Vol. 102, Issue 9
  • DOI: 10.1021/jp972890j

Efficiencies of Electron Injection from Excited N3 Dye into Nanocrystalline Semiconductor (ZrO 2 , TiO 2 , ZnO, Nb 2 O 5 , SnO 2 , In 2 O 3 ) Films
journal, April 2004

  • Katoh, Ryuzi; Furube, Akihiro; Yoshihara, Toshitada
  • The Journal of Physical Chemistry B, Vol. 108, Issue 15
  • DOI: 10.1021/jp031260g

Light-Induced Redox Reactions in Nanocrystalline Systems
journal, January 1995

  • Hagfeldt, Anders.; Graetzel, Michael.
  • Chemical Reviews, Vol. 95, Issue 1
  • DOI: 10.1021/cr00033a003

Lifetimes, spectra, and quenching of the excited states of polypyridine complexes of iron(II), ruthenium(II), and osmium(II)
journal, February 1980

  • Creutz, Carol; Chou, Mei; Netzel, Thomas L.
  • Journal of the American Chemical Society, Vol. 102, Issue 4
  • DOI: 10.1021/ja00524a014

The Oxidation-Reduction Potentials of Systems Involving the Bivalent and Tervalent Complexes of Iron, Ruthenium and Osmium with 2,2'2″-Terpyridyl
journal, December 1954

  • Dwyer, F. P.; Gyarfas, E. C.
  • Journal of the American Chemical Society, Vol. 76, Issue 24
  • DOI: 10.1021/ja01653a021

Spectroelectrochemical studies of hole percolation on functionalised nanocrystalline TiO 2 films: a comparison of two different ruthenium complexes
journal, January 2011

  • Li, Xiaoe; Nazeeruddin, Mohammad K.; Thelakkat, Mukundan
  • Phys. Chem. Chem. Phys., Vol. 13, Issue 4
  • DOI: 10.1039/C0CP01013H

Diffusional Mediation of Surface Electron Transfer on TiO 2
journal, January 1999

  • Trammell, Scott A.; Meyer, Thomas J.
  • The Journal of Physical Chemistry B, Vol. 103, Issue 1
  • DOI: 10.1021/jp9825258

Structure–Property Relationships in Phosphonate-Derivatized, Ru II Polypyridyl Dyes on Metal Oxide Surfaces in an Aqueous Environment
journal, July 2012

  • Hanson, Kenneth; Brennaman, M. Kyle; Ito, Akitaka
  • The Journal of Physical Chemistry C, Vol. 116, Issue 28
  • DOI: 10.1021/jp304088d

Influence of Surface Protonation on the Sensitization Efficiency of Porphyrin-Derivatized TiO 2
journal, August 2004

  • Watson, David F.; Marton, Andras; Stux, Arnold M.
  • The Journal of Physical Chemistry B, Vol. 108, Issue 31
  • DOI: 10.1021/jp048182x

Energetics of the Nanocrystalline Titanium Dioxide/Aqueous Solution Interface:  Approximate Conduction Band Edge Variations between H 0 = −10 and H - = +26
journal, June 1999

  • Lyon, L. Andrew; Hupp, Joseph T.
  • The Journal of Physical Chemistry B, Vol. 103, Issue 22
  • DOI: 10.1021/jp9908404

Photophysical Characterization of a Chromophore/Water Oxidation Catalyst Containing a Layer-by-Layer Assembly on Nanocrystalline TiO 2 Using Ultrafast Spectroscopy
journal, May 2014

  • Bettis, Stephanie E.; Hanson, Kenneth; Wang, Li
  • The Journal of Physical Chemistry A, Vol. 118, Issue 45
  • DOI: 10.1021/jp411139j

Nickel Confined in the Interlayer Region of Birnessite: an Active Electrocatalyst for Water Oxidation
journal, May 2016

  • Thenuwara, Akila C.; Cerkez, Elizabeth B.; Shumlas, Samantha L.
  • Angewandte Chemie International Edition, Vol. 55, Issue 35
  • DOI: 10.1002/anie.201601935

Solvation dynamics in water confined within layered manganese dioxide
journal, September 2017


Effect of Interlayer Spacing on the Activity of Layered Manganese Oxide Bilayer Catalysts for the Oxygen Evolution Reaction
journal, January 2017

  • Kang, Qing; Vernisse, Loranne; Remsing, Richard C.
  • Journal of the American Chemical Society, Vol. 139, Issue 5
  • DOI: 10.1021/jacs.6b09184

Frustrated Solvation Structures Can Enhance Electron Transfer Rates
journal, November 2015

  • Remsing, Richard C.; McKendry, Ian G.; Strongin, Daniel R.
  • The Journal of Physical Chemistry Letters, Vol. 6, Issue 23
  • DOI: 10.1021/acs.jpclett.5b02277

Synthesis and Photophysical Properties of a Covalently Linked Porphyrin Chromophore–Ru(II) Water Oxidation Catalyst Assembly on SnO 2 Electrodes
journal, December 2017

  • Nayak, Animesh; Hu, Ke; Roy, Subhangi
  • The Journal of Physical Chemistry C, Vol. 122, Issue 25
  • DOI: 10.1021/acs.jpcc.7b11711

Proton-coupled electron transfer at modified electrodes by multiple pathways
journal, December 2011

  • Chen, Z.; Vannucci, A. K.; Concepcion, J. J.
  • Proceedings of the National Academy of Sciences, Vol. 108, Issue 52
  • DOI: 10.1073/pnas.1115769108

A High-Valent Metal-Oxo Species Produced by Photoinduced One-Electron, Two-Proton Transfer Reactivity
journal, December 2017


Reduction of nitrate ion by (bpy)2pyRu(OH2)2+
journal, February 1979

  • Moyer, Bruce A.; Meyer, Thomas J.
  • Journal of the American Chemical Society, Vol. 101, Issue 5
  • DOI: 10.1021/ja00499a070

Visible-Light-Induced and Long-Lived Charge Separation in a Transparent Nanostructured Semiconductor Membrane Modified by an Adsorbed Electron Donor and Electron Acceptor
journal, December 1997

  • Hoyle, Robert; Sotomayor, Joao; Will, Geoffrey
  • The Journal of Physical Chemistry B, Vol. 101, Issue 50
  • DOI: 10.1021/jp9711297

Conduction Band Mediated Electron Transfer Across Nanocrystalline TiO 2 Surfaces
journal, June 2007

  • Staniszewski, Aaron; Morris, Amanda J.; Ito, Tamae
  • The Journal of Physical Chemistry B, Vol. 111, Issue 24
  • DOI: 10.1021/jp070413n

Chronoabsorptometry To Investigate Conduction-Band-Mediated Electron Transfer in Mesoporous TiO 2 Thin Films
journal, June 2015

  • Renault, Christophe; Balland, Véronique; Limoges, Benoît
  • The Journal of Physical Chemistry C, Vol. 119, Issue 27
  • DOI: 10.1021/acs.jpcc.5b03477

Accumulation of Multiple Oxidative Equivalents at a Single Site by Cross-Surface Electron Transfer on TiO 2
journal, July 2013

  • Song, Wenjing; Ito, Akitaka; Binstead, Robert A.
  • Journal of the American Chemical Society, Vol. 135, Issue 31
  • DOI: 10.1021/ja4032538

Works referencing / citing this record:

Core–shell structured titanium dioxide nanomaterials for solar energy utilization
journal, January 2018

  • Li, Wei; Elzatahry, Ahmed; Aldhayan, Dhaifallah
  • Chemical Society Reviews, Vol. 47, Issue 22
  • DOI: 10.1039/c8cs00443a