DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Facile and Efficient Decontamination of Thorium from Rare Earths Based on Selective Selenite Crystallization

Abstract

The coexistence of radioactive contaminants (e.g., thorium, uranium, and their daughters) in rare earth minerals introduces significant environmental, economic, and technological hurdles in modern rare earth production. Capable, low cost, and green decontamination strategies are therefore desired to ameliorate this problem. In this work, we report a single-step and quantitative decontamination strategy of thorium from rare earths based on a unique periodic trend in the formation of crystalline selenite compounds across the lanthanide series, where Ce(III) is fully oxidized in situ to Ce(IV). This gives rise to a crystallization system that is highly selective to trap tetravalent f-blocks while all other trivalent lanthanides completely remain in solution when coexist. These findings are bolstered by first-principles calculations of lattice energies and an examination of bonding in these compounds. This system is contrasted with typical natural and synthetic systems, where trivalent and tetravalent f-block elements often cocrystallize. The separation factors after one round of crystallization were determined from binary systems of Th(IV)/La(III), Th(IV)/Eu(III), and Th(IV)/Yb(III) to reach 2.1 × 105, 1.2 × 105, and 9 × 104, respectively. Selective crystallization of thorium from a simulated monazite composite yields a separation factor of 1.9 × 103 with nearly quantitative removal of thorium.

Authors:
ORCiD logo [1];  [2];  [2];  [3];  [4];  [2];  [2];  [2];  [2]; ORCiD logo [4]; ORCiD logo [2];  [2]; ORCiD logo [5];  [6]; ORCiD logo [2]
  1. Sichuan Univ., Chengdu (China); Soochow Univ., Suzhou (China)
  2. Soochow Univ., Suzhou (China)
  3. Southwest Univ. of Science and Technology, Mianyang (China)
  4. Chinese Academy of Sciences (CAS), Ningbo (China)
  5. Florida State Univ., Tallahassee, FL (United States)
  6. Sichuan Univ., Chengdu (China)
Publication Date:
Research Org.:
Florida State Univ., Tallahassee, FL (United States). Energy Frontier Research Center (EFRC) Center for Actinide Science & Technology (CAST)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1470227
Grant/Contract Number:  
SC0016568
Resource Type:
Accepted Manuscript
Journal Name:
Inorganic Chemistry
Additional Journal Information:
Journal Volume: 57; Journal Issue: 4; Journal ID: ISSN 0020-1669
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
38 RADIATION CHEMISTRY, RADIOCHEMISTRY, AND NUCLEAR CHEMISTRY

Citation Formats

Wang, Yaxing, Lu, Huangjie, Dai, Xing, Duan, Tao, Bai, Xiaojing, Cai, Yawen, Yin, Xuemiao, Chen, Lanhua, Diwu, Juan, Du, Shiyu, Zhou, Ruhong, Chai, Zhifang, Albrecht-Schmitt, Thomas E., Liu, Ning, and Wang, Shuao. Facile and Efficient Decontamination of Thorium from Rare Earths Based on Selective Selenite Crystallization. United States: N. p., 2018. Web. doi:10.1021/acs.inorgchem.7b02681.
Wang, Yaxing, Lu, Huangjie, Dai, Xing, Duan, Tao, Bai, Xiaojing, Cai, Yawen, Yin, Xuemiao, Chen, Lanhua, Diwu, Juan, Du, Shiyu, Zhou, Ruhong, Chai, Zhifang, Albrecht-Schmitt, Thomas E., Liu, Ning, & Wang, Shuao. Facile and Efficient Decontamination of Thorium from Rare Earths Based on Selective Selenite Crystallization. United States. https://doi.org/10.1021/acs.inorgchem.7b02681
Wang, Yaxing, Lu, Huangjie, Dai, Xing, Duan, Tao, Bai, Xiaojing, Cai, Yawen, Yin, Xuemiao, Chen, Lanhua, Diwu, Juan, Du, Shiyu, Zhou, Ruhong, Chai, Zhifang, Albrecht-Schmitt, Thomas E., Liu, Ning, and Wang, Shuao. Fri . "Facile and Efficient Decontamination of Thorium from Rare Earths Based on Selective Selenite Crystallization". United States. https://doi.org/10.1021/acs.inorgchem.7b02681. https://www.osti.gov/servlets/purl/1470227.
@article{osti_1470227,
title = {Facile and Efficient Decontamination of Thorium from Rare Earths Based on Selective Selenite Crystallization},
author = {Wang, Yaxing and Lu, Huangjie and Dai, Xing and Duan, Tao and Bai, Xiaojing and Cai, Yawen and Yin, Xuemiao and Chen, Lanhua and Diwu, Juan and Du, Shiyu and Zhou, Ruhong and Chai, Zhifang and Albrecht-Schmitt, Thomas E. and Liu, Ning and Wang, Shuao},
abstractNote = {The coexistence of radioactive contaminants (e.g., thorium, uranium, and their daughters) in rare earth minerals introduces significant environmental, economic, and technological hurdles in modern rare earth production. Capable, low cost, and green decontamination strategies are therefore desired to ameliorate this problem. In this work, we report a single-step and quantitative decontamination strategy of thorium from rare earths based on a unique periodic trend in the formation of crystalline selenite compounds across the lanthanide series, where Ce(III) is fully oxidized in situ to Ce(IV). This gives rise to a crystallization system that is highly selective to trap tetravalent f-blocks while all other trivalent lanthanides completely remain in solution when coexist. These findings are bolstered by first-principles calculations of lattice energies and an examination of bonding in these compounds. This system is contrasted with typical natural and synthetic systems, where trivalent and tetravalent f-block elements often cocrystallize. The separation factors after one round of crystallization were determined from binary systems of Th(IV)/La(III), Th(IV)/Eu(III), and Th(IV)/Yb(III) to reach 2.1 × 105, 1.2 × 105, and 9 × 104, respectively. Selective crystallization of thorium from a simulated monazite composite yields a separation factor of 1.9 × 103 with nearly quantitative removal of thorium.},
doi = {10.1021/acs.inorgchem.7b02681},
journal = {Inorganic Chemistry},
number = 4,
volume = 57,
place = {United States},
year = {Fri Feb 02 00:00:00 EST 2018},
month = {Fri Feb 02 00:00:00 EST 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 27 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Environmental Life Cycle Perspective on Rare Earth Oxide Production
journal, January 2015

  • Zaimes, George G.; Hubler, Berlyn J.; Wang, Shuo
  • ACS Sustainable Chemistry & Engineering, Vol. 3, Issue 2
  • DOI: 10.1021/sc500573b

Seven chemical separations to change the world
journal, April 2016

  • Sholl, David S.; Lively, Ryan P.
  • Nature, Vol. 532, Issue 7600
  • DOI: 10.1038/532435a

A review of the beneficiation of rare earth element bearing minerals
journal, February 2013


Separation of uranium and thorium from rare earths for rare earth production – A review
journal, June 2015


Concomitant Leaching and Electrochemical Extraction of Rare Earth Elements from Monazite
journal, January 2017

  • Maes, Synthia; Zhuang, Wei-Qin; Rabaey, Korneel
  • Environmental Science & Technology, Vol. 51, Issue 3
  • DOI: 10.1021/acs.est.6b03675

Rationally designed mineralization for selective recovery of the rare earth elements
journal, May 2017

  • Hatanaka, Takaaki; Matsugami, Akimasa; Nonaka, Takamasa
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms15670

Technique for Enhanced Rare Earth Separation
journal, September 2000


Ionic Liquids-Based Extraction: A Promising Strategy for the Advanced Nuclear Fuel Cycle
journal, December 2011

  • Sun, Xiaoqi; Luo, Huimin; Dai, Sheng
  • Chemical Reviews, Vol. 112, Issue 4
  • DOI: 10.1021/cr200193x

Size-Selective Crystallization of Homochiral Camphorate Metal–Organic Frameworks for Lanthanide Separation
journal, August 2014

  • Zhao, Xiang; Wong, Matthew; Mao, Chengyu
  • Journal of the American Chemical Society, Vol. 136, Issue 36
  • DOI: 10.1021/ja5067306

Rare-Earth Separation Using Bacteria
journal, March 2016


Layered A 2 Sn 3 S 7 ·1.25H 2 O ( A = Organic Cation) as Efficient Ion-Exchanger for Rare Earth Element Recovery
journal, March 2017

  • Qi, Xing-Hui; Du, Ke-Zhao; Feng, Mei-Ling
  • Journal of the American Chemical Society, Vol. 139, Issue 12
  • DOI: 10.1021/jacs.7b00565

An Operationally Simple Method for Separating the Rare-Earth Elements Neodymium and Dysprosium
journal, May 2015

  • Bogart, Justin A.; Lippincott, Connor A.; Carroll, Patrick J.
  • Angewandte Chemie International Edition, Vol. 54, Issue 28
  • DOI: 10.1002/anie.201501659

Accomplishing simple, solubility-based separations of rare earth elements with complexes bearing size-sensitive molecular apertures
journal, December 2016

  • Bogart, Justin A.; Cole, Bren E.; Boreen, Michael A.
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 52
  • DOI: 10.1073/pnas.1612628113

Electro-kinetic Separation of Rare Earth Elements Using a Redox-Active Ligand
journal, September 2017

  • Fang, Huayi; Cole, Bren E.; Qiao, Yusen
  • Angewandte Chemie International Edition, Vol. 56, Issue 43
  • DOI: 10.1002/anie.201706894

Rare earth separations by selective borate crystallization
journal, March 2017

  • Yin, Xuemiao; Wang, Yaxing; Bai, Xiaojing
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms14438

Actinide oxalates, solid state structures and applications
journal, May 2014

  • Abraham, Francis; Arab-Chapelet, Bénédicte; Rivenet, Murielle
  • Coordination Chemistry Reviews, Vol. 266-267
  • DOI: 10.1016/j.ccr.2013.08.036

Th(VO 3 ) 2 (SeO 3 ) and Ln(VO 3 ) 2 (IO 3 ) (Ln = Ce, Pr, Nd, Sm, and Eu): unusual cases of aliovalent substitution
journal, January 2014

  • Eaton, Teresa; Lin, Jian; Cross, Justin N.
  • Chem. Commun., Vol. 50, Issue 28
  • DOI: 10.1039/C4CC00537F

Density‐functional thermochemistry. III. The role of exact exchange
journal, April 1993

  • Becke, Axel D.
  • The Journal of Chemical Physics, Vol. 98, Issue 7, p. 5648-5652
  • DOI: 10.1063/1.464913

Energy‐adjusted a b i n i t i o pseudopotentials for the rare earth elements
journal, February 1989

  • Dolg, M.; Stoll, H.; Preuss, H.
  • The Journal of Chemical Physics, Vol. 90, Issue 3
  • DOI: 10.1063/1.456066

Self‐Consistent Molecular‐Orbital Methods. IX. An Extended Gaussian‐Type Basis for Molecular‐Orbital Studies of Organic Molecules
journal, January 1971

  • Ditchfield, R.; Hehre, W. J.; Pople, J. A.
  • The Journal of Chemical Physics, Vol. 54, Issue 2
  • DOI: 10.1063/1.1674902

Semiempirical hybrid density functional with perturbative second-order correlation
journal, January 2006

  • Grimme, Stefan
  • The Journal of Chemical Physics, Vol. 124, Issue 3
  • DOI: 10.1063/1.2148954

Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy
journal, January 2005

  • Weigend, Florian; Ahlrichs, Reinhart
  • Physical Chemistry Chemical Physics, Vol. 7, Issue 18, p. 3297-3305
  • DOI: 10.1039/b508541a

Accurate Coulomb-fitting basis sets for H to Rn
journal, January 2006

  • Weigend, Florian
  • Physical Chemistry Chemical Physics, Vol. 8, Issue 9
  • DOI: 10.1039/b515623h

Design of Density Functionals by Combining the Method of Constraint Satisfaction with Parametrization for Thermochemistry, Thermochemical Kinetics, and Noncovalent Interactions
journal, January 2006

  • Zhao, Yan; Schultz, Nathan E.; Truhlar, Donald G.
  • Journal of Chemical Theory and Computation, Vol. 2, Issue 2
  • DOI: 10.1021/ct0502763

Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions
journal, May 2009

  • Marenich, Aleksandr V.; Cramer, Christopher J.; Truhlar, Donald G.
  • The Journal of Physical Chemistry B, Vol. 113, Issue 18, p. 6378-6396
  • DOI: 10.1021/jp810292n

Inhomogeneous Electron Gas
journal, November 1964


First principles methods using CASTEP
journal, January 2005

  • Clark, Stewart J.; Segall, Matthew D.; Pickard, Chris J.
  • Zeitschrift für Kristallographie - Crystalline Materials, Vol. 220, Issue 5/6
  • DOI: 10.1524/zkri.220.5.567.65075

First-principles simulation: ideas, illustrations and the CASTEP code
journal, March 2002

  • Segall, M. D.; Lindan, Philip J. D.; Probert, M. J.
  • Journal of Physics: Condensed Matter, Vol. 14, Issue 11
  • DOI: 10.1088/0953-8984/14/11/301

Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

An all‐electron numerical method for solving the local density functional for polyatomic molecules
journal, January 1990

  • Delley, B.
  • The Journal of Chemical Physics, Vol. 92, Issue 1
  • DOI: 10.1063/1.458452

From molecules to solids with the DMol3 approach
journal, November 2000

  • Delley, B.
  • The Journal of Chemical Physics, Vol. 113, Issue 18
  • DOI: 10.1063/1.1316015

Hardness conserving semilocal pseudopotentials
journal, October 2002


Wasserfreie Selenite des Lanthans: Synthese und Kristallstruktur von La2(SeO3)3 und LaFSeO3
journal, February 2000


Synthesis and crystal structure of a new neodymium(III) selenate-selenite: Nd2(SeO4)(SeO3)2(H2O)2
journal, February 2005


Present Status of Cerium(IV)-Cerium(III) Potentials
journal, December 1957

  • Wadsworth, Earl.; Duke, F. R.; Goetz, C. A.
  • Analytical Chemistry, Vol. 29, Issue 12
  • DOI: 10.1021/ac60132a046

The electrochemical behavior of cerium(III/IV) complexes: Thermodynamics, kinetics and applications in synthesis
journal, February 2014

  • Piro, Nicholas A.; Robinson, Jerome R.; Walsh, Patrick J.
  • Coordination Chemistry Reviews, Vol. 260
  • DOI: 10.1016/j.ccr.2013.08.034

Controlled Redox Chemistry at Cerium within a Tripodal Nitroxide Ligand Framework
journal, October 2015

  • Bogart, Justin A.; Lippincott, Connor A.; Carroll, Patrick J.
  • Chemistry - A European Journal, Vol. 21, Issue 49
  • DOI: 10.1002/chem.201502952

Selenium Sequestration in a Cationic Layered Rare Earth Hydroxide: A Combined Batch Experiments and EXAFS Investigation
journal, July 2017

  • Zhu, Lin; Zhang, Linjuan; Li, Jie
  • Environmental Science & Technology, Vol. 51, Issue 15
  • DOI: 10.1021/acs.est.7b02006

Chemical and Structural Evolution in the Th–SeO 3 2– /SeO 4 2– System: from Simple Selenites to Cluster-Based Selenate Compounds
journal, February 2015


Electroseparation of thorium from ThO2 and La2O3 by forming Th-Al alloys in LiCl-KCl eutectic
journal, March 2015


Electrochemical separation of Th from ThO2 and Eu2O3 assisted by AlCl3 in molten LiCl–KCl
journal, December 2013


Global rare earth resources and scenarios of future rare earth industry
journal, January 2011


A Revised and Expanded Structure Hierarchy of Natural and Synthetic Hexavalent Uranium Compounds
journal, January 2016

  • Lussier, Aaron J.; Lopez, Rachel A. K.; Burns, Peter C.
  • The Canadian Mineralogist, Vol. 54, Issue 1
  • DOI: 10.3749/canmin.1500078

Structural chemistry of uranium phosphonates
journal, November 2015


Uranyl Bearing Hybrid Materials: Synthesis, Speciation, and Solid-State Structures
journal, August 2012

  • Andrews, Michael B.; Cahill, Christopher L.
  • Chemical Reviews, Vol. 113, Issue 2
  • DOI: 10.1021/cr300202a

The crystal chemistry of uranium carboxylates
journal, May 2014

  • Loiseau, Thierry; Mihalcea, Ionut; Henry, Natacha
  • Coordination Chemistry Reviews, Vol. 266-267
  • DOI: 10.1016/j.ccr.2013.08.038

The Renaissance of Non-Aqueous Uranium Chemistry
journal, June 2015


Works referencing / citing this record:

Photoinduced Multiple Effects to Enhance Uranium Extraction from Natural Seawater by Black Phosphorus Nanosheets
journal, November 2019


Ultra-selective ligand-driven separation of strategic actinides
journal, June 2019

  • Deblonde, Gauthier J. -P.; Ricano, Abel; Abergel, Rebecca J.
  • Nature Communications, Vol. 10, Issue 1
  • DOI: 10.1038/s41467-019-10240-x

Size-dependent selective crystallization using an inorganic mixed-oxoanion system for lanthanide separation
journal, January 2019

  • Lu, Huangjie; Guo, Xiaojing; Wang, Yaxing
  • Dalton Transactions, Vol. 48, Issue 34
  • DOI: 10.1039/c9dt02387a

Photoinduced Multiple Effects to Enhance Uranium Extraction from Natural Seawater by Black Phosphorus Nanosheets
journal, December 2019

  • Yuan, Yihui; Niu, Biye; Yu, Qiuhan
  • Angewandte Chemie International Edition, Vol. 59, Issue 3
  • DOI: 10.1002/anie.201913644