DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Direct observation of magnon-phonon coupling in yttrium iron garnet

Abstract

The magnetic insulator yttrium iron garnet (YIG) with a ferrimagnetic transition temperature of ~ 560 K has been widely used in microwave and spintronic devices. Anomalous features in spin Seeback effect (SSE) voltages have been observed in Pt/YIG and attributed to magnon-phonon coupling. Here, we use inelastic neutron scattering to map out low-energy spin waves and acoustic phonons of YIG at 100 K as a function of increasing magnetic field. In this work, by comparing the zero and 9.1 T data, we find that instead of splitting and opening up gaps at the spin wave and acoustic phonon dispersion intersecting points, magnon-phonon coupling in YIG enhances the hybridized scattering intensity. These results are different from expectations of conventional spin-lattice coupling, calling for different paradigms to understand the scattering process of magnon-phonon interactions and the resulting magnon polarons.

Authors:
 [1];  [2];  [3];  [4];  [5];  [5];  [5];  [6];  [4];  [7]
  1. Rice Univ., Houston, TX (United States)
  2. Univ. of California, Riverside, CA (United States); Tongji University, Shanghai (China)
  3. National Inst. of Standards and Technology (NIST), Gaithersburg, MD (United States)
  4. Univ. of California, Riverside, CA (United States)
  5. Univ. of Texas, Austin, TX (United States)
  6. Beijing Normal University (China)
  7. Rice Univ., Houston, TX (United States); Beijing Normal University (China)
Publication Date:
Research Org.:
Energy Frontier Research Centers (EFRC) (United States). Spins and Heat in Nanoscale Electronic Systems (SHINES)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); Robert A. Welch Foundation; US Army Research Office (ARO); National Natural Science Foundation of China (NSFC)
OSTI Identifier:
1470136
Alternate Identifier(s):
OSTI ID: 1395197
Grant/Contract Number:  
SC0012670; SC0012311; C-1839; W911NF-14-1-0016; 61774017
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review B
Additional Journal Information:
Journal Volume: 96; Journal Issue: 10; Related Information: SHINES partners with University of California, Riverside (lead); Arizona State University; Colorado State University; Johns Hopkins University; University of California Irvine; University of California Los Angeles; University of Texas at Austin; Journal ID: ISSN 2469-9950
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; phonons; thermal conductivity; thermoelectric; spin dynamics; spintronics

Citation Formats

Man, Haoran, Shi, Zhong, Xu, Guangyong, Xu, Yadong, Chen, Xi, Sullivan, Sean, Zhou, Jianshi, Xia, Ke, Shi, Jing, and Dai, Pengcheng. Direct observation of magnon-phonon coupling in yttrium iron garnet. United States: N. p., 2017. Web. doi:10.1103/physrevb.96.100406.
Man, Haoran, Shi, Zhong, Xu, Guangyong, Xu, Yadong, Chen, Xi, Sullivan, Sean, Zhou, Jianshi, Xia, Ke, Shi, Jing, & Dai, Pengcheng. Direct observation of magnon-phonon coupling in yttrium iron garnet. United States. https://doi.org/10.1103/physrevb.96.100406
Man, Haoran, Shi, Zhong, Xu, Guangyong, Xu, Yadong, Chen, Xi, Sullivan, Sean, Zhou, Jianshi, Xia, Ke, Shi, Jing, and Dai, Pengcheng. Wed . "Direct observation of magnon-phonon coupling in yttrium iron garnet". United States. https://doi.org/10.1103/physrevb.96.100406. https://www.osti.gov/servlets/purl/1470136.
@article{osti_1470136,
title = {Direct observation of magnon-phonon coupling in yttrium iron garnet},
author = {Man, Haoran and Shi, Zhong and Xu, Guangyong and Xu, Yadong and Chen, Xi and Sullivan, Sean and Zhou, Jianshi and Xia, Ke and Shi, Jing and Dai, Pengcheng},
abstractNote = {The magnetic insulator yttrium iron garnet (YIG) with a ferrimagnetic transition temperature of ~ 560 K has been widely used in microwave and spintronic devices. Anomalous features in spin Seeback effect (SSE) voltages have been observed in Pt/YIG and attributed to magnon-phonon coupling. Here, we use inelastic neutron scattering to map out low-energy spin waves and acoustic phonons of YIG at 100 K as a function of increasing magnetic field. In this work, by comparing the zero and 9.1 T data, we find that instead of splitting and opening up gaps at the spin wave and acoustic phonon dispersion intersecting points, magnon-phonon coupling in YIG enhances the hybridized scattering intensity. These results are different from expectations of conventional spin-lattice coupling, calling for different paradigms to understand the scattering process of magnon-phonon interactions and the resulting magnon polarons.},
doi = {10.1103/physrevb.96.100406},
journal = {Physical Review B},
number = 10,
volume = 96,
place = {United States},
year = {Wed Sep 27 00:00:00 EDT 2017},
month = {Wed Sep 27 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 47 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Magnon-polaron transport in magnetic insulators
journal, April 2017


First-principles study of exchange interactions of yttrium iron garnet
journal, January 2017


Antiferromagnetic order and spin dynamics in iron-based superconductors
journal, August 2015


YIG magnonics
journal, June 2010


Magnon-phonon interconversion in a dynamically reconfigurable magnetic material
journal, December 2015


Spontaneous decays of magneto-elastic excitations in non-collinear antiferromagnet (Y,Lu)MnO3
journal, October 2016

  • Oh, Joosung; Le, Manh Duc; Nahm, Ho-Hyun
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms13146

Magnon Polarons in the Spin Seebeck Effect
journal, November 2016


Opportunities at the Frontiers of Spintronics
journal, October 2015


Spin Seebeck devices using local on-chip heating
journal, May 2015

  • Wu, Stephen M.; Fradin, Frank Y.; Hoffman, Jason
  • Journal of Applied Physics, Vol. 117, Issue 17
  • DOI: 10.1063/1.4916188

Spin waves and magnetic exchange interactions in CaFe2As2
journal, July 2009

  • Zhao, Jun; Adroja, D. T.; Yao, Dao-Xin
  • Nature Physics, Vol. 5, Issue 8
  • DOI: 10.1038/nphys1336

Spin-Seebeck Effect: A Phonon Driven Spin Distribution
journal, May 2011


Spinwave dispersion curves for yttrium iron garnet
journal, December 1977


Coherent elastic excitation of spin waves
journal, March 2015


Thermal Spin Dynamics of Yttrium Iron Garnet
journal, November 2016


Heat-driven spin transport in a ferromagnetic metal
journal, December 2014

  • Xu, Yadong; Yang, Bowen; Tang, Chi
  • Applied Physics Letters, Vol. 105, Issue 24
  • DOI: 10.1063/1.4904467

Colloquium : Spontaneous magnon decays
journal, January 2013


Effect of phonon-magnon interaction on the Green functions of crystals and their light-scattering spectra
journal, March 1976


Spin-Wave Spectra of Yttrium and Gadolinium Iron Garnet
journal, December 1963


Magnon damping by magnon-phonon coupling in manganese perovskites
journal, April 2000


Laser-Induced Spatiotemporal Dynamics of Magnetic Films
journal, November 2015


Structure and ferrimagnetism of yttrium and rare-earth–iron garnets
journal, March 1957


Spin caloritronics
journal, April 2012

  • Bauer, Gerrit E. W.; Saitoh, Eiji; van Wees, Bart J.
  • Nature Materials, Vol. 11, Issue 5
  • DOI: 10.1038/nmat3301

Gigantic enhancement of spin Seebeck effect by phonon drag
journal, December 2010

  • Adachi, Hiroto; Uchida, Ken-ichi; Saitoh, Eiji
  • Applied Physics Letters, Vol. 97, Issue 25
  • DOI: 10.1063/1.3529944

Spin Seebeck effect in nanometer-thick YIG micro-fabricated strips
journal, February 2017

  • Collet, Martin; Soumah, Lucile; Bortolotti, Paolo
  • AIP Advances, Vol. 7, Issue 5
  • DOI: 10.1063/1.4976332

Single crystal growth of YIG by the floating zone method
journal, December 1977


Spin Seebeck insulator
journal, September 2010

  • Uchida, K.; Xiao, J.; Adachi, H.
  • Nature Materials, Vol. 9, Issue 11
  • DOI: 10.1038/nmat2856

Enhanced spin Seebeck effect signal due to spin-momentum locked topological surface states
journal, May 2016

  • Jiang, Zilong; Chang, Cui-Zu; Masir, Massoud Ramezani
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms11458

Spin wave stiffness constants in some ferrimagnetics
journal, March 1987


All-optical observation and reconstruction of spin wave dispersion
journal, June 2017

  • Hashimoto, Yusuke; Daimon, Shunsuke; Iguchi, Ryo
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms15859

Linear spin wave theory for single-Q incommensurate magnetic structures
journal, March 2015


Magnon transistor for all-magnon data processing
journal, August 2014

  • Chumak, Andrii V.; Serga, Alexander A.; Hillebrands, Burkard
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms5700

Magnon spintronics
journal, June 2015

  • Chumak, A. V.; Vasyuchka, V. I.; Serga, A. A.
  • Nature Physics, Vol. 11, Issue 6
  • DOI: 10.1038/nphys3347

The saga of YIG: Spectra, thermodynamics, interaction and relaxation of magnons in a complex magnet
journal, July 1993


Observation of the spin Seebeck effect
journal, October 2008


Transmission of electrical signals by spin-wave interconversion in a magnetic insulator
journal, March 2010


“Spin Caloritronics”
journal, March 2010

  • Bauer, Gerrit E. W.; MacDonald, Allan H.; Maekawa, Sadamichi
  • Solid State Communications, Vol. 150, Issue 11-12
  • DOI: 10.1016/j.ssc.2010.01.022

A scalable molecule-based magnetic thin film for spin-thermoelectric energy conversion
journal, February 2021


Spin caloritronics
journal, January 2014

  • Boona, Stephen R.; Myers, Roberto C.; Heremans, Joseph P.
  • Energy & Environmental Science, Vol. 7, Issue 3
  • DOI: 10.1039/c3ee43299h

Spin Waves and Magnetic Exchange Interactions in CaFe2As2
text, January 2009


Gigantic enhancement of spin Seebeck effect by phonon drag
text, January 2010


Spin Caloritronics
text, January 2011


Heat-driven spin transport in a ferromagnetic metal
text, January 2014


Coherent elastic excitation of spin waves
text, January 2014


Spin Seebeck devices using local on-chip heating
text, January 2015


Laser-induced spatiotemporal dynamics of magnetic films
text, January 2015


Enhanced spin Seebeck effect signal due to spin-momentum locked topological surface states
text, January 2016


Magnon Polarons in the Spin Seebeck Effect
text, January 2016


First-Principles Study of Exchange Interactions of Yttrium Iron Garnet
text, January 2017


Magnon Damping by magnon-phonon coupling in Manganese Perovskites
text, January 1999


Works referencing / citing this record:

First-principles Modeling of Thermal Transport in Materials: Achievements, Opportunities, and Challenges
journal, December 2019

  • Ma, Tengfei; Chakraborty, Pranay; Guo, Xixi
  • International Journal of Thermophysics, Vol. 41, Issue 1
  • DOI: 10.1007/s10765-019-2583-4

Room temperature and low-field resonant enhancement of spin Seebeck effect in partially compensated magnets
journal, November 2019


Detecting the phonon spin in magnon–phonon conversion experiments
journal, April 2018


Enhanced magnon spin transport in NiFe 2 O 4 thin films on a lattice-matched substrate
journal, October 2018

  • Shan, J.; Singh, A. V.; Liang, L.
  • Applied Physics Letters, Vol. 113, Issue 16
  • DOI: 10.1063/1.5049749

Long lifetime of thermally excited magnons in bulk yttrium iron garnet
journal, October 2019


Magnon polarons in the spin Peltier effect
journal, January 2020


Magnon-polaron excitations in the noncollinear antiferromagnet Mn 3 Ge
journal, June 2019


Magnon polarons in the spin Peltier effect
text, January 2019