DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Physics-informed machine learning for inorganic scintillator discovery

Abstract

Applications of inorganic scintillators—activated with lanthanide dopants, such as Ce and Eu—are found in diverse fields. As a strict requirement to exhibit scintillation, the 4f ground state (with the electronic configuration of [Xe]4fn 5d0) and 5d1 lowest excited state (with the electronic configuration of [Xe]4fn−1 5d1) levels induced by the activator must lie within the host bandgap. Here we introduce a new machine learning (ML) based search strategy for high-throughput chemical space explorations to discover and design novel inorganic scintillators. Building upon well-known physics-based chemical trends for the host dependent electron binding energies within the 4f and 5d1 energy levels of lanthanide ions and available experimental data, the developed ML model—coupled with knowledge of the vacuum referred valence and conduction band edges computed from first principles—can rapidly and reliably estimate the relative positions of the activator’s energy levels relative to the valence and conduction band edges of any given host chemistry. Using perovskite oxides and elpasolite halides as examples, the presented approach has been demonstrated to be able to (i) capture systematic chemical trends across host chemistries and (ii) effectively screen promising compounds in a high-throughput manner. While a number of other application-specific performance requirements need to be considered formore » a viable scintillator, the scheme developed here can be a practically useful tool to systematically down-select the most promising candidate materials in a first line of screening for a subsequent in-depth investigation.« less

Authors:
ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]
  1. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Publication Date:
Research Org.:
Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE Laboratory Directed Research and Development (LDRD) Program
OSTI Identifier:
1467213
Alternate Identifier(s):
OSTI ID: 1434562
Report Number(s):
LA-UR-18-21016
Journal ID: ISSN 0021-9606
Grant/Contract Number:  
AC52-06NA25396; 20180009DR
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Chemical Physics
Additional Journal Information:
Journal Volume: 148; Journal Issue: 24; Journal ID: ISSN 0021-9606
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Pilania, Ghanshyam, McClellan, Kenneth James, Stanek, Christopher Richard, and Uberuaga, Blas P. Physics-informed machine learning for inorganic scintillator discovery. United States: N. p., 2018. Web. doi:10.1063/1.5025819.
Pilania, Ghanshyam, McClellan, Kenneth James, Stanek, Christopher Richard, & Uberuaga, Blas P. Physics-informed machine learning for inorganic scintillator discovery. United States. https://doi.org/10.1063/1.5025819
Pilania, Ghanshyam, McClellan, Kenneth James, Stanek, Christopher Richard, and Uberuaga, Blas P. Wed . "Physics-informed machine learning for inorganic scintillator discovery". United States. https://doi.org/10.1063/1.5025819. https://www.osti.gov/servlets/purl/1467213.
@article{osti_1467213,
title = {Physics-informed machine learning for inorganic scintillator discovery},
author = {Pilania, Ghanshyam and McClellan, Kenneth James and Stanek, Christopher Richard and Uberuaga, Blas P.},
abstractNote = {Applications of inorganic scintillators—activated with lanthanide dopants, such as Ce and Eu—are found in diverse fields. As a strict requirement to exhibit scintillation, the 4f ground state (with the electronic configuration of [Xe]4fn 5d0) and 5d1 lowest excited state (with the electronic configuration of [Xe]4fn−1 5d1) levels induced by the activator must lie within the host bandgap. Here we introduce a new machine learning (ML) based search strategy for high-throughput chemical space explorations to discover and design novel inorganic scintillators. Building upon well-known physics-based chemical trends for the host dependent electron binding energies within the 4f and 5d1 energy levels of lanthanide ions and available experimental data, the developed ML model—coupled with knowledge of the vacuum referred valence and conduction band edges computed from first principles—can rapidly and reliably estimate the relative positions of the activator’s energy levels relative to the valence and conduction band edges of any given host chemistry. Using perovskite oxides and elpasolite halides as examples, the presented approach has been demonstrated to be able to (i) capture systematic chemical trends across host chemistries and (ii) effectively screen promising compounds in a high-throughput manner. While a number of other application-specific performance requirements need to be considered for a viable scintillator, the scheme developed here can be a practically useful tool to systematically down-select the most promising candidate materials in a first line of screening for a subsequent in-depth investigation.},
doi = {10.1063/1.5025819},
journal = {Journal of Chemical Physics},
number = 24,
volume = 148,
place = {United States},
year = {Wed Apr 25 00:00:00 EDT 2018},
month = {Wed Apr 25 00:00:00 EDT 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 25 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Crystal structure representations for machine learning models of formation energies
text, January 2015


Energy position of 4 f levels in rare-earth metals
journal, August 1979


5d-level energies of Ce3+ and the crystalline environment. IV. Aluminates and “simple” oxides
journal, October 2002


High-Throughput Combinatorial Database of Electronic Band Structures for Inorganic Scintillator Materials
journal, June 2011

  • Setyawan, Wahyu; Gaume, Romain M.; Lam, Stephanie
  • ACS Combinatorial Science, Vol. 13, Issue 4
  • DOI: 10.1021/co200012w

Machine Learning for Quantum Mechanical Properties of Atoms in Molecules
text, January 2015

  • Matthias, Rupp,; Raghunathan, Ramakrishnan,; Anatole, von Lilienfeld, O.
  • American Chemical Society
  • DOI: 10.5451/unibas-ep53266

Hybrid functionals based on a screened Coulomb potential
journal, May 2003

  • Heyd, Jochen; Scuseria, Gustavo E.; Ernzerhof, Matthias
  • The Journal of Chemical Physics, Vol. 118, Issue 18
  • DOI: 10.1063/1.1564060

The growth and scintillation properties of Cs2NaCeCl6 single crystal
journal, April 2009


Machine Learning Predictions of Molecular Properties: Accurate Many-Body Potentials and Nonlocality in Chemical Space
journal, June 2015

  • Hansen, Katja; Biegler, Franziska; Ramakrishnan, Raghunathan
  • The Journal of Physical Chemistry Letters, Vol. 6, Issue 12
  • DOI: 10.1021/acs.jpclett.5b00831

Luminescence and Scintillation Characteristics of ${\rm Rb}_{2}{\rm LiCeBr}_{6}$ Single Crystal
journal, December 2010


Big Data Meets Quantum Chemistry Approximations: The Δ-Machine Learning Approach
text, January 2015

  • Ramakrishnan, Raghunathan; Dral, Pavlo O.; Rupp, Matthias
  • American Chemical Society
  • DOI: 10.5451/unibas-ep43348

Band offsets and optical bowings of chalcopyrites and Zn‐based II‐VI alloys
journal, September 1995

  • Wei, Su‐Huai; Zunger, Alex
  • Journal of Applied Physics, Vol. 78, Issue 6
  • DOI: 10.1063/1.359901

Adaptive machine learning framework to accelerate ab initio molecular dynamics
journal, December 2014

  • Botu, Venkatesh; Ramprasad, Rampi
  • International Journal of Quantum Chemistry, Vol. 115, Issue 16
  • DOI: 10.1002/qua.24836

Machine learning for quantum mechanics in a nutshell
journal, July 2015

  • Rupp, Matthias
  • International Journal of Quantum Chemistry, Vol. 115, Issue 16
  • DOI: 10.1002/qua.24954

Optical and scintillation properties of Cs/sub 2/LiYCl/sub 6/:Ce/sup 3+/ and Cs/sub 2/LiYCl/sub 6/:Pr/sup 3+/ crystals
conference, January 2004

  • van Loef, E. V. D.; Glodo, J.; Higgins, W. M.
  • IEEE Symposium Conference Record Nuclear Science 2004.
  • DOI: 10.1109/nssmic.2004.1462194

The absolute energy positions of conduction and valence bands of selected semiconducting minerals
journal, March 2000

  • Xu, Yong; Schoonen, Martin A. A.
  • American Mineralogist, Vol. 85, Issue 3-4
  • DOI: 10.2138/am-2000-0416

Surface core-level shifts of clean and oxygen-covered Ru(0001)
journal, May 2001


Rational design of binary halide scintillators via data mining
journal, July 2012

  • Kong, Chang Sun; Rajan, Krishna
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 680
  • DOI: 10.1016/j.nima.2012.03.050

Learning physical descriptors for materials science by compressed sensing
journal, February 2017

  • Ghiringhelli, Luca M.; Vybiral, Jan; Ahmetcik, Emre
  • New Journal of Physics, Vol. 19, Issue 2
  • DOI: 10.1088/1367-2630/aa57bf

5 d -level energies of Ce 3 + and the crystalline environment. I. Fluoride compounds
journal, December 2000


Energy gap–refractive index relations in semiconductors – An overview
journal, March 2007


Fractional charge perspective on the band-gap in density-functional theory
text, January 2007


Broadband near‐infrared luminescence of Cr + 3 in the elpasolite lattices Cs 2 NaInCl 6 , Cs 2 NaYCl 6 , and Cs 2 NaYBr 6
journal, October 1986

  • Knochenmuss, Richard; Reber, Christian; Rajasekharan, Melath V.
  • The Journal of Chemical Physics, Vol. 85, Issue 8
  • DOI: 10.1063/1.451801

Big Data Meets Quantum Chemistry Approximations: The Δ-Machine Learning Approach
journal, April 2015

  • Ramakrishnan, Raghunathan; Dral, Pavlo O.; Rupp, Matthias
  • Journal of Chemical Theory and Computation, Vol. 11, Issue 5
  • DOI: 10.1021/acs.jctc.5b00099

Electronic structure of AlFeN films exhibiting crystallographic orientation change from c- to a-axis with Fe concentrations and annealing effect
journal, February 2020


Heterojunction band offset engineering
journal, January 1996


Luminescence of the elpasolite series MI2MIIMCl6 (MI=Cs, Rb; MII=Li, Na; M=Lu, Y, Sc, In) doped with europium using synchrotron radiation excitation
journal, April 2012


Multi-fidelity machine learning models for accurate bandgap predictions of solids
journal, March 2017


The 5d level positions of the trivalent lanthanides in inorganic compounds
journal, November 2000


First-Principles Studies of Luminescence in Ce doped Inorganic Scintillators
text, January 2010


Optical and scintillation properties of Cs/sub 2/LiYCl/sub 6/:Ce/sup 3+/ and Cs/sub 2/LiYCl/sub 6/:Pr/sup 3+/ crystals
journal, October 2005

  • van Loef, E. V. D.; Glodo, J.; Higgins, W. M.
  • IEEE Transactions on Nuclear Science, Vol. 52, Issue 5
  • DOI: 10.1109/tns.2005.856812

Machine Learning Strategy for Accelerated Design of Polymer Dielectrics
journal, February 2016

  • Mannodi-Kanakkithodi, Arun; Pilania, Ghanshyam; Huan, Tran Doan
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep20952

Reducing Dzyaloshinskii-Moriya interaction and field-free spin-orbit torque switching in synthetic antiferromagnets
journal, May 2021


Luminescence and scintillation characterizations of cerium doped Cs2LiGdBr6 single crystal
journal, February 2014


Accelerated materials property predictions and design using motif-based fingerprints
text, January 2015


Eu2+-doped Ba2CsI5, a new high-performance scintillator
journal, December 2009

  • Bourret-Courchesne, E. D.; Bizarri, G.; Borade, R.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 612, Issue 1, p. 138-142
  • DOI: 10.1016/j.nima.2009.10.146

Using Machine Learning To Identify Factors That Govern Amorphization of Irradiated Pyrochlores
journal, November 2016


Structure maps for. Pseudobinary and ternary phases
journal, August 1988


Inorganic scintillators: today and tomorrow
journal, December 2002


Cs2LiGdCl6 (Ce): New scintillation material
journal, July 2010


Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis
journal, February 2013


From Organized High-Throughput Data to Phenomenological Theory using Machine Learning: The Example of Dielectric Breakdown
journal, February 2016


High-energy-resolution scintillator: Ce3+ activated LaBr3
journal, September 2001

  • van Loef, E. V. D.; Dorenbos, P.; van Eijk, C. W. E.
  • Applied Physics Letters, Vol. 79, Issue 10, p. 1573-1575
  • DOI: 10.1063/1.1385342

Systematic behaviour in trivalent lanthanide charge transfer energies
journal, November 2003


Phase equilibria, crystal structures, and dielectric anomaly in the BaZrO3–CaZrO3 system
journal, November 2003


By-passing the Kohn-Sham equations with machine learning
text, January 2016


The 4f ↔4f − 15d transitions of the trivalent lanthanides in halogenides and chalcogenides
journal, September 2000


Prediction of Flatband Potentials at Semiconductor-Electrolyte Interfaces from Atomic Electronegativities
journal, January 1978

  • Butler, M. A.
  • Journal of The Electrochemical Society, Vol. 125, Issue 2
  • DOI: 10.1149/1.2131419

Design Rules for Ce-Activated Scintillating Radiation Detection Materials: Compromises Between Luminosity and Stopping Power
journal, June 2008

  • Webb-Robertson, Bobbie-Jo M.; Ferris, Kim F.; Jones, Dumont M.
  • IEEE Transactions on Nuclear Science, Vol. 55, Issue 3
  • DOI: 10.1109/tns.2007.914366

Crystal structure of double oxides of the perovskite type
journal, May 1946


Prospects for High Energy Resolution Gamma Ray Spectroscopy with Europium-Doped Strontium Iodide
journal, January 2009


Fast and Accurate Modeling of Molecular Atomization Energies with Machine Learning
text, January 2011


Investigation of scintillation and luminescence properties of cerium doped Rb2LiGdCl6 single crystals
journal, August 2013


A Review on How Lanthanide Impurity Levels Change with Chemistry and Structure of Inorganic Compounds
journal, November 2012

  • Dorenbos, Pieter
  • ECS Journal of Solid State Science and Technology, Vol. 2, Issue 2
  • DOI: 10.1149/2.001302jss

Scintillation and spectroscopy of the pure and Ce -doped elpasolites: Cs 2 LiYX 6 (X   Cl, Br)
journal, August 2002

  • Loef, E. V. D. van; Dorenbos, P.; Eijk, C. W. E. van
  • Journal of Physics: Condensed Matter, Vol. 14, Issue 36
  • DOI: 10.1088/0953-8984/14/36/307

Ce3+ doped inorganic scintillators
journal, September 1994

  • van Eijk, C. W. E.; Andriessen, J.; Dorenbos, P.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 348, Issue 2-3
  • DOI: 10.1016/0168-9002(94)90798-6

Growth and scintillation characterization of Ce3+-doped Rb2LiGdBr6 single crystals
journal, October 2016

  • Rooh, Gul; Kim, H. J.; Kim, Sunghwan
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 832
  • DOI: 10.1016/j.nima.2016.06.117

Machine learning in materials informatics: recent applications and prospects
journal, December 2017

  • Ramprasad, Rampi; Batra, Rohit; Pilania, Ghanshyam
  • npj Computational Materials, Vol. 3, Issue 1
  • DOI: 10.1038/s41524-017-0056-5

Scintillation characteristics of Cs2LiCeBr6 crystal
journal, October 2011

  • Cheon, Jong Kyu; Kim, Sunghwan; Rooh, Gul
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 652, Issue 1
  • DOI: 10.1016/j.nima.2011.02.038

BaHfO3:Ce sintered ceramic scintillators
journal, March 2010


Machine learning properties of binary wurtzite superlattices
journal, January 2018


Electronic Structure
book, January 2004


Machine Learning Assisted Predictions of Intrinsic Dielectric Breakdown Strength of ABX 3 Perovskites
journal, June 2016

  • Kim, Chiho; Pilania, Ghanshyam; Ramprasad, Rampi
  • The Journal of Physical Chemistry C, Vol. 120, Issue 27
  • DOI: 10.1021/acs.jpcc.6b05068

Machine Learning in Materials Science
book, January 2016

  • Mueller, Tim; Kusne, Aaron Gilad; Ramprasad, Rampi
  • Reviews in Computational Chemistry, Vol. 29
  • DOI: 10.1002/9781119148739.ch4

Understanding machine-learned density functionals: Understanding Machine-Learned Density Functionals
journal, November 2015

  • Li, Li; Snyder, John C.; Pelaschier, Isabelle M.
  • International Journal of Quantum Chemistry, Vol. 116, Issue 11
  • DOI: 10.1002/qua.25040

Machine Learning for Quantum Mechanical Properties of Atoms in Molecules
journal, July 2015

  • Rupp, Matthias; Ramakrishnan, Raghunathan; von Lilienfeld, O. Anatole
  • The Journal of Physical Chemistry Letters, Vol. 6, Issue 16
  • DOI: 10.1021/acs.jpclett.5b01456

Ionization energies of doubly and triply ionized rare earths
journal, August 1973

  • Sugar, Jack; Reader, Joseph
  • The Journal of Chemical Physics, Vol. 59, Issue 4
  • DOI: 10.1063/1.1680295

Accelerating materials property predictions using machine learning
journal, September 2013

  • Pilania, Ghanshyam; Wang, Chenchen; Jiang, Xun
  • Scientific Reports, Vol. 3, Issue 1
  • DOI: 10.1038/srep02810

Surface Core Level Shifts of Clean and Oxygen Covered Ru(0001)
text, January 2001


Machine learning bandgaps of double perovskites
journal, January 2016

  • Pilania, G.; Mannodi-Kanakkithodi, A.; Uberuaga, B. P.
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep19375

Vacuum Referred Binding Energies of the Lanthanides in Transition Metal Oxide Compounds
journal, January 2014

  • Dorenbos, Pieter; Rogers, Edith G.
  • ECS Journal of Solid State Science and Technology, Vol. 3, Issue 8
  • DOI: 10.1149/2.0061408jss

Scintillation Characterization of Rb$_{2}$LiCeCl$_{6}$ Single Crystal
journal, October 2012


Crystal structure representations for machine learning models of formation energies
journal, April 2015

  • Faber, Felix; Lindmaa, Alexander; von Lilienfeld, O. Anatole
  • International Journal of Quantum Chemistry, Vol. 115, Issue 16
  • DOI: 10.1002/qua.24917

Band-Gap and Band-Edge Engineering of Multicomponent Garnet Scintillators from First Principles
journal, November 2015


Atomic Radii in Crystals
journal, November 1964

  • Slater, J. C.
  • The Journal of Chemical Physics, Vol. 41, Issue 10
  • DOI: 10.1063/1.1725697

Scintillation: mechanisms and new crystals
journal, July 2004

  • Weber, M. J.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 527, Issue 1-2
  • DOI: 10.1016/j.nima.2004.03.009

Bypassing the Kohn-Sham equations with machine learning
journal, October 2017


Commentary: The Materials Project: A materials genome approach to accelerating materials innovation
journal, July 2013

  • Jain, Anubhav; Ong, Shyue Ping; Hautier, Geoffroy
  • APL Materials, Vol. 1, Issue 1
  • DOI: 10.1063/1.4812323

Fractional charge perspective on the band gap in density-functional theory
journal, March 2008


Crystal Growth and Scintillation Properties of ${\hbox {Cs}}_{2}{\hbox {NaCeBr}}_{6}$
journal, June 2010

  • Kim, Sunghwan; Rooh, Gul; Kim, H. J.
  • IEEE Transactions on Nuclear Science, Vol. 57, Issue 3
  • DOI: 10.1109/tns.2010.2041789

Band bowing and band alignment in InGaN alloys
journal, January 2010

  • Moses, Poul Georg; Van de Walle, Chris G.
  • Applied Physics Letters, Vol. 96, Issue 2
  • DOI: 10.1063/1.3291055

Materials Design and Discovery with High-Throughput Density Functional Theory: The Open Quantum Materials Database (OQMD)
journal, September 2013


Assessment and Validation of Machine Learning Methods for Predicting Molecular Atomization Energies
journal, July 2013

  • Hansen, Katja; Montavon, Grégoire; Biegler, Franziska
  • Journal of Chemical Theory and Computation, Vol. 9, Issue 8
  • DOI: 10.1021/ct400195d

All the Lanthanides Do It and Even Uranium Does Oxidation State +2
journal, March 2014


AFLOWLIB.ORG: A distributed materials properties repository from high-throughput ab initio calculations
journal, June 2012


Crystal structure of double oxides of the perovskite type
journal, March 1946


Rationale for mixing exact exchange with density functional approximations
journal, December 1996

  • Perdew, John P.; Ernzerhof, Matthias; Burke, Kieron
  • The Journal of Chemical Physics, Vol. 105, Issue 22, p. 9982-9985
  • DOI: 10.1063/1.472933

Machine Learning Predictions of Molecular Properties: Accurate Many-Body Potentials and Nonlocality in Chemical Space
text, January 2015

  • Hansen, Katja; Biegler, Franziska; Ramakrishnan, Raghunathan
  • American Chemical Society
  • DOI: 10.5451/unibas-ep43351

Luminescence and scintillation properties of Ce3+-activated Cs2NaGdCl6, Cs3GdCl6, Cs2NaGdBr6 and Cs3GdBr6
journal, September 2014


New thermal neutron scintillators: Cs/sub 2/LiYCl/sub 6/:Ce/sup 3+/ and Cs/sub 2/LiYBr/sub 6/:Ce/sup 3+/
journal, October 2004

  • Bessiere, A.; Dorenbos, P.; van Eijk, C. W. E.
  • IEEE Transactions on Nuclear Science, Vol. 51, Issue 5
  • DOI: 10.1109/tns.2004.834957

CRC Handbook of Chemistry and Physics
book, June 2014


Works referencing / citing this record:

Guest Editorial: Special Topic on Data-Enabled Theoretical Chemistry
journal, June 2018

  • Rupp, Matthias; von Lilienfeld, O. Anatole; Burke, Kieron
  • The Journal of Chemical Physics, Vol. 148, Issue 24
  • DOI: 10.1063/1.5043213

Emerging role of machine learning in light-matter interaction
journal, September 2019


Emerging role of machine learning in light-matter interaction
journal, September 2019


Energy Gap-Refractive Index Relations in Perovskites
journal, April 2020

  • Lamichhane, Aneer; Ravindra, Nuggehalli M.
  • Materials, Vol. 13, Issue 8
  • DOI: 10.3390/ma13081917

Data-enabled structure–property mappings for lanthanide-activated inorganic scintillators
journal, February 2019