DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Control of thermal expansion in a low-density framework modification of silicon

Abstract

The low-density clathrate-II modification of silicon, Si136, contains two distinct cage-like voids large enough to accommodate various types of guest atoms which influence both the host structure and its properties. Although the linear coefficient of thermal expansion of Si136 (293 K < T < 423 K) is only about 20% larger than that of the ground state α-Si (diamond structure), the coefficient of thermal expansion monotonically increases by more than 150% upon filling the framework cages with Na atoms in NaxSi136 (0 < x < 24), ranging from α = 2.6 x 10–6 K–1 (x = 0) to 6.8 × 10–6 K–1 (extrapolated to x = 24) by only varying the Na content, x. Taken together with the available heat capacity and bulk modulus data, the dramatic increase in thermal expansion can be attributed to an increase in the mode-averaged Grüneisen parameter by a factor of nearly 3 from x = 0 to x = 24. Furthermore, these results highlight a potential mechanism for tuning thermal expansion, whereby guest atoms are incorporated into the voids of rigid, covalently bonded inorganic frameworks to influence the lattice dynamics.

Authors:
 [1];  [2];  [3];  [1];  [1];  [4]
  1. California Polytechnic State Univ. (CalPoly), San Luis Obispo, CA (United States)
  2. Illinois Inst. of Technology, Chicago, IL (United States); North Central College, Naperville, IL (United States)
  3. National Inst. of Standards and Technology (NIST), Gaithersburg, MD (United States)
  4. Univ. of South Florida, Tampa, FL (United States)
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)
Sponsoring Org.:
SDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22). Scientific User Facilities Division; National Science Foundation (NSF)
OSTI Identifier:
1436777
Alternate Identifier(s):
OSTI ID: 1435392
Grant/Contract Number:  
AC02-06CH11357; DMR-1400957
Resource Type:
Accepted Manuscript
Journal Name:
Applied Physics Letters
Additional Journal Information:
Journal Volume: 112; Journal Issue: 18; Journal ID: ISSN 0003-6951
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
ENGLISH
Subject:
36 MATERIALS SCIENCE; Crystallography; Crystal lattices; Silicon; Bulk modulus; Thermal effects; Lattice dynamics; Phonons; Complex solids; Thermodynamic properties; Anharmonicity

Citation Formats

Beekman, Matt, Kaduk, James A., Wong-Ng, Winnie, Troesch, Michael, Lee, Glenn S., and Nolas, George S. Control of thermal expansion in a low-density framework modification of silicon. United States: N. p., 2018. Web. doi:10.1063/1.5027229.
Beekman, Matt, Kaduk, James A., Wong-Ng, Winnie, Troesch, Michael, Lee, Glenn S., & Nolas, George S. Control of thermal expansion in a low-density framework modification of silicon. United States. https://doi.org/10.1063/1.5027229
Beekman, Matt, Kaduk, James A., Wong-Ng, Winnie, Troesch, Michael, Lee, Glenn S., and Nolas, George S. Mon . "Control of thermal expansion in a low-density framework modification of silicon". United States. https://doi.org/10.1063/1.5027229. https://www.osti.gov/servlets/purl/1436777.
@article{osti_1436777,
title = {Control of thermal expansion in a low-density framework modification of silicon},
author = {Beekman, Matt and Kaduk, James A. and Wong-Ng, Winnie and Troesch, Michael and Lee, Glenn S. and Nolas, George S.},
abstractNote = {The low-density clathrate-II modification of silicon, Si136, contains two distinct cage-like voids large enough to accommodate various types of guest atoms which influence both the host structure and its properties. Although the linear coefficient of thermal expansion of Si136 (293 K < T < 423 K) is only about 20% larger than that of the ground state α-Si (diamond structure), the coefficient of thermal expansion monotonically increases by more than 150% upon filling the framework cages with Na atoms in NaxSi136 (0 < x < 24), ranging from α = 2.6 x 10–6 K–1 (x = 0) to 6.8 × 10–6 K–1 (extrapolated to x = 24) by only varying the Na content, x. Taken together with the available heat capacity and bulk modulus data, the dramatic increase in thermal expansion can be attributed to an increase in the mode-averaged Grüneisen parameter by a factor of nearly 3 from x = 0 to x = 24. Furthermore, these results highlight a potential mechanism for tuning thermal expansion, whereby guest atoms are incorporated into the voids of rigid, covalently bonded inorganic frameworks to influence the lattice dynamics.},
doi = {10.1063/1.5027229},
journal = {Applied Physics Letters},
number = 18,
volume = 112,
place = {United States},
year = {Mon Apr 30 00:00:00 EDT 2018},
month = {Mon Apr 30 00:00:00 EDT 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 5 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Two Decades of Negative Thermal Expansion Research: Where Do We Stand?
journal, June 2012


High Pressure Behavior of Silicon Clathrates: A New Class of Low Compressibility Materials
journal, December 1999


Intrinsic Electrical and Thermal Properties from Single Crystals of Na 24 Si 136
journal, January 2010


The Distortion‐Adjusted Change of Thermal Expansion Behavior of Cubic Magnetic Semiconductor (Sc 1− x M x )F 3 (M = Al, Fe)
journal, July 2016

  • Han, Fei; Chen, Jun; Hu, Lei
  • Journal of the American Ceramic Society, Vol. 99, Issue 9
  • DOI: 10.1111/jace.14399

Ab initio calculation of thermodynamic properties of silicon
journal, November 1994


EXPGUI , a graphical user interface for GSAS
journal, April 2001


Tunable Anisotropic Thermal Expansion of a Porous Zinc(II) Metal–Organic Framework
journal, April 2013

  • Grobler, Ilne; Smith, Vincent J.; Bhatt, Prashant M.
  • Journal of the American Chemical Society, Vol. 135, Issue 17
  • DOI: 10.1021/ja401671p

New hopes for allotropes
journal, July 2015


Synthesis and Structural Characterization of Na x Si 136 (0 < x ≤ 24) Single Crystals and Low-Temperature Transport of Polycrystalline Specimens
journal, August 2012

  • Stefanoski, Stevce; Malliakas, Christos D.; Kanatzidis, Mercouri G.
  • Inorganic Chemistry, Vol. 51, Issue 16
  • DOI: 10.1021/ic202199t

Tunable thermal expansion and magnetism in Zr-doped ScF 3
journal, October 2016

  • Wang, Tao; Xu, Jiale; Hu, Lei
  • Applied Physics Letters, Vol. 109, Issue 18
  • DOI: 10.1063/1.4966958

Ab initio lattice dynamical studies of silicon clathrate frameworks and their negative thermal expansion
journal, January 2014


Phonon density of states of silicon clathrates: Characteristic width narrowing effect with respect to the diamond phase
journal, April 1999


Thermal properties of guest-free Si136 and Ge136 clathrates: A first-principles study
journal, August 2008

  • Biswas, Koushik; Myles, Charles W.; Sanati, Mahdi
  • Journal of Applied Physics, Vol. 104, Issue 3
  • DOI: 10.1063/1.2960580

Thermal conductivity of elemental crystalline silicon clathrate Si136
journal, February 2003

  • Nolas, G. S.; Beekman, M.; Gryko, J.
  • Applied Physics Letters, Vol. 82, Issue 6
  • DOI: 10.1063/1.1544640

Negative thermal expansion and compressibility of Sc 1– x Y x F 3 (x≤0.25)
journal, December 2013

  • Morelock, Cody R.; Greve, Benjamin K.; Gallington, Leighanne C.
  • Journal of Applied Physics, Vol. 114, Issue 21
  • DOI: 10.1063/1.4836855

Negative Thermal Expansion from 0.3 to 1050 Kelvin in ZrW2O8
journal, April 1996


Tuning negative thermal expansion in Bi 1− x Ln x NiO 3 ( Ln = La, Nd, Eu, Dy)
journal, August 2013

  • Oka, Kengo; Nabetani, Koichiro; Sakaguchi, Chika
  • Applied Physics Letters, Vol. 103, Issue 6
  • DOI: 10.1063/1.4817976

Influence of guest loading on thermal properties of Na x Si 136 clathrates
journal, October 2013


Inorganic clathrate-II materials of group 14: synthetic routes and physical properties
journal, January 2008

  • Beekman, M.; Nolas, G. S.
  • J. Mater. Chem., Vol. 18, Issue 8
  • DOI: 10.1039/B706808E

Tunable thermal expansion in framework materials through redox intercalation
journal, February 2017

  • Chen, Jun; Gao, Qilong; Sanson, Andrea
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms14441

Negative thermal expansion materials: technological key for control of thermal expansion
journal, February 2012


Negative thermal expansion in functional materials: controllable thermal expansion by chemical modifications
journal, January 2015

  • Chen, Jun; Hu, Lei; Deng, Jinxia
  • Chemical Society Reviews, Vol. 44, Issue 11
  • DOI: 10.1039/C4CS00461B

A profile refinement method for nuclear and magnetic structures
journal, June 1969


Systematic and Controllable Negative, Zero, and Positive Thermal Expansion in Cubic Zr 1– x Sn x Mo 2 O 8
journal, August 2013

  • Tallentire, Sarah E.; Child, Felicity; Fall, Ian
  • Journal of the American Chemical Society, Vol. 135, Issue 34
  • DOI: 10.1021/ja4060564

Complex changes in the framework of endohedrally Na-doped type II Si clathrates with respect to Na content
journal, September 2012

  • Ban, Takayuki; Ogura, Takuya; Ohashi, Yoshitaka
  • Journal of Materials Science, Vol. 48, Issue 3
  • DOI: 10.1007/s10853-012-6886-0

Clathrates and beyond: Low-density allotropy in crystalline silicon
journal, June 2016

  • Beekman, Matt; Wei, Kaya; Nolas, George S.
  • Applied Physics Reviews, Vol. 3, Issue 4
  • DOI: 10.1063/1.4953165

Framework Contraction in Na-Stuffed Si( cF 136)
journal, June 2010

  • Beekman, Matt; Nenghabi, Emmanuel N.; Biswas, Koushik
  • Inorganic Chemistry, Vol. 49, Issue 12
  • DOI: 10.1021/ic1005049

Thermal properties of Si 136 : Theoretical and experimental study of the type-II clathrate polymorph of Si
journal, July 2006


Negative thermal expansion and low-frequency modes in cyanide-bridged framework materials
journal, April 2005


High-pressure phase transformation of the silicon clathrate Si 136
journal, May 2000

  • Ramachandran, Ganesh K.; McMillan, Paul F.; Deb, Sudip K.
  • Journal of Physics: Condensed Matter, Vol. 12, Issue 17
  • DOI: 10.1088/0953-8984/12/17/308

A study of low-energy guest phonon modes in clathrate-II Na x Si 136 ( x = 3, 23, and 24)
journal, August 2010


The widespread occurrence of negative thermal expansion in zeolites
journal, January 2001

  • Lightfoot, Philip; Woodcock, David A.; Maple, Martin J.
  • Journal of Materials Chemistry, Vol. 11, Issue 1
  • DOI: 10.1039/b002950p

First-principles calculations for thermodynamic properties of type-I silicon clathrate intercalated by sodium atoms
journal, October 2015


Phonon dynamics in type-VIII silicon clathrates: Beyond the rattler concept
journal, May 2017


Thermal expansion behavior of silicon at low temperatures
journal, January 1972


Works referencing / citing this record:

Zintl Phases as Reactive Precursors for Synthesis of Novel Silicon and Germanium-Based Materials
journal, April 2019

  • Beekman, Matt; Kauzlarich, Susan; Doherty, Luke
  • Materials, Vol. 12, Issue 7
  • DOI: 10.3390/ma12071139