DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Characterization of Electronic and Ionic Transport in Li1-xNi0.33Mn0.33Co0.33O2 (NMC333) and Li 1-xNi0.50Mn0.20Co0.30O2 (NMC523) as a Function of Li Content

Abstract

Despite the extensive commercial use of Li1-xNi1-y-zMnzCoyO2 (NMC) as the positive electrode in Li-ion batteries, and its long research history, its fundamental transport properties are poorly understood. These properties are crucial for designing high energy density and high power Li-ion batteries. Here, the transport properties of NMC333 and NMC523 are investigated using impedance spectroscopy and DC polarization and depolarization techniques. The electronic conductivity is found to increase with decreasing Li-content (increasing state-of-charge) from ~10–7 Scm–1 to ~10–2 Scm–1 over Li concentrations x = 0.00 to 0.75, corresponding to an upper charge voltage of 4.8 V with respect to Li/Li+. The lithium ion diffusivity is at least one order of magnitude lower, and decreases with increasing x to at x = ~0.5. As a result, the ionic conductivity and diffusivity obtained from the two measurements techniques (EIS and DC) are in good agreement, and chemical diffusion is limited by lithium transport over a wide state-of-charge range.

Authors:
 [1];  [2]
  1. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Hamad Bin Khalifa Univ., Doha (Qatar)
  2. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
Publication Date:
Research Org.:
Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1436504
Grant/Contract Number:  
SC0012583
Resource Type:
Accepted Manuscript
Journal Name:
Journal of the Electrochemical Society
Additional Journal Information:
Journal Volume: 163; Journal Issue: 8; Journal ID: ISSN 0013-4651
Publisher:
The Electrochemical Society
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; Delithiation; Electronic; Energy storage; Ionic; Lithium Battery; Semiconductors; Solid-State Ionics; Transport properties

Citation Formats

Amin, Ruhul, and Chiang, Yet -Ming. Characterization of Electronic and Ionic Transport in Li1-xNi0.33Mn0.33Co0.33O2 (NMC333) and Li 1-xNi0.50Mn0.20Co0.30O2 (NMC523) as a Function of Li Content. United States: N. p., 2016. Web. doi:10.1149/2.0131608jes.
Amin, Ruhul, & Chiang, Yet -Ming. Characterization of Electronic and Ionic Transport in Li1-xNi0.33Mn0.33Co0.33O2 (NMC333) and Li 1-xNi0.50Mn0.20Co0.30O2 (NMC523) as a Function of Li Content. United States. https://doi.org/10.1149/2.0131608jes
Amin, Ruhul, and Chiang, Yet -Ming. Fri . "Characterization of Electronic and Ionic Transport in Li1-xNi0.33Mn0.33Co0.33O2 (NMC333) and Li 1-xNi0.50Mn0.20Co0.30O2 (NMC523) as a Function of Li Content". United States. https://doi.org/10.1149/2.0131608jes. https://www.osti.gov/servlets/purl/1436504.
@article{osti_1436504,
title = {Characterization of Electronic and Ionic Transport in Li1-xNi0.33Mn0.33Co0.33O2 (NMC333) and Li 1-xNi0.50Mn0.20Co0.30O2 (NMC523) as a Function of Li Content},
author = {Amin, Ruhul and Chiang, Yet -Ming},
abstractNote = {Despite the extensive commercial use of Li1-xNi1-y-zMnzCoyO2 (NMC) as the positive electrode in Li-ion batteries, and its long research history, its fundamental transport properties are poorly understood. These properties are crucial for designing high energy density and high power Li-ion batteries. Here, the transport properties of NMC333 and NMC523 are investigated using impedance spectroscopy and DC polarization and depolarization techniques. The electronic conductivity is found to increase with decreasing Li-content (increasing state-of-charge) from ~10–7 Scm–1 to ~10–2 Scm–1 over Li concentrations x = 0.00 to 0.75, corresponding to an upper charge voltage of 4.8 V with respect to Li/Li+. The lithium ion diffusivity is at least one order of magnitude lower, and decreases with increasing x to at x = ~0.5. As a result, the ionic conductivity and diffusivity obtained from the two measurements techniques (EIS and DC) are in good agreement, and chemical diffusion is limited by lithium transport over a wide state-of-charge range.},
doi = {10.1149/2.0131608jes},
journal = {Journal of the Electrochemical Society},
number = 8,
volume = 163,
place = {United States},
year = {Fri May 13 00:00:00 EDT 2016},
month = {Fri May 13 00:00:00 EDT 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 184 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

“Electrochemical Shock” of Intercalation Electrodes: A Fracture Mechanics Analysis
journal, January 2010

  • Woodford, William H.; Chiang, Yet-Ming; Carter, W. Craig
  • Journal of The Electrochemical Society, Vol. 157, Issue 10
  • DOI: 10.1149/1.3464773

On the LixNi0.8Co0.2O2System
journal, February 1998


Cathode materials for lithium rocking chair batteries
journal, March 1996


Synthesis and Characterization of Carbon-Coated LiNi 1/3 Co 1/3 Mn 1/3 O 2 in a Single Step by an Inverse Microemulsion Route
journal, May 2009

  • Sinha, Nupur Nikkan; Munichandraiah, N.
  • ACS Applied Materials & Interfaces, Vol. 1, Issue 6
  • DOI: 10.1021/am900120s

Comparison of the Performance of LiNi1/2Mn3/2O4 with Different Microstructures
journal, January 2011

  • Cabana, Jordi; Zheng, Honghe; Shukla, Alpesh K.
  • Journal of The Electrochemical Society, Vol. 158, Issue 9
  • DOI: 10.1149/1.3606570

Characterization of Electronic and Ionic Transport in Li 1- x Ni 0 . 8 Co 0.15 Al 0.05 O 2 (NCA)
journal, January 2015

  • Amin, Ruhul; Ravnsbæk, Dorthe Bomholdt; Chiang, Yet-Ming
  • Journal of The Electrochemical Society, Vol. 162, Issue 7
  • DOI: 10.1149/2.0171507jes

Study of the surface modification of LiNi1/3Co1/3Mn1/3O2 cathode material for lithium ion battery
journal, October 2011


Lithium Diffusion in Layered Li[sub x]CoO[sub 2]
journal, January 1999

  • Van der Ven, A.
  • Electrochemical and Solid-State Letters, Vol. 3, Issue 7
  • DOI: 10.1149/1.1391130

7Li MAS NMR study of electrochemically deintercalated LixNi0.30Co0.70O2 phases: evidence of electronic and ionic mobility, and redox processes
journal, January 2001

  • Carlier, Dany; Ménétrier, Michel; Delmas, Claude
  • Journal of Materials Chemistry, Vol. 11, Issue 2
  • DOI: 10.1039/b006179o

Flexible, Solid Electrolyte-Based Lithium Battery Composed of LiFePO 4 Cathode and Li 4 Ti 5 O 12 Anode for Applications in Smart Textiles
journal, January 2012

  • Liu, Y.; Gorgutsa, S.; Santato, Clara
  • Journal of The Electrochemical Society, Vol. 159, Issue 4
  • DOI: 10.1149/2.020204jes

Solid-State Redox Reactions of LiNi[sub 1∕2]Co[sub 1∕2]O[sub 2] (R3m) for 4 Volt Secondary Lithium Cells
journal, January 1994

  • Ueda, Atsushi
  • Journal of The Electrochemical Society, Vol. 141, Issue 8
  • DOI: 10.1149/1.2055051

Design criteria for electrochemical shock resistant battery electrodes
journal, January 2012

  • Woodford, William H.; Carter, W. Craig; Chiang, Yet-Ming
  • Energy & Environmental Science, Vol. 5, Issue 7, p. 8014-8024
  • DOI: 10.1039/c2ee21874g

Electrochemical and Physical Properties of Ti-Substituted Layered Nickel Manganese Cobalt Oxide (NMC) Cathode Materials
journal, January 2012

  • Kam, Kinson C.; Mehta, Apurva; Heron, John T.
  • Journal of The Electrochemical Society, Vol. 159, Issue 8
  • DOI: 10.1149/2.060208jes

Thermal, electrochemical and structural properties of stabilized LiNiyCo1-y-zMzO2 lithium-ion cathode material prepared by a chemical route
journal, January 2001

  • D'Epifanio, A.; Croce, F.; Ronci, F.
  • Physical Chemistry Chemical Physics, Vol. 3, Issue 19
  • DOI: 10.1039/b104615m

High Rate Capability of Porous LiNi[sub 1/3]Co[sub 1/3]Mn[sub 1/3]O[sub 2] Synthesized by Polymer Template Route
journal, January 2010

  • Sinha, Nupur Nikkan; Munichandraiah, N.
  • Journal of The Electrochemical Society, Vol. 157, Issue 6
  • DOI: 10.1149/1.3364944

Ionic and electronic transport in single crystalline LiFePO4 grown by optical floating zone technique
journal, September 2008


Effect of Preparation Methods of LiNi[sub 1−x]Co[sub x]O[sub 2] Cathode Materials on Their Chemical Structure and Electrode Performance
journal, January 1999

  • Cho, Jaephil
  • Journal of The Electrochemical Society, Vol. 146, Issue 10
  • DOI: 10.1149/1.1392516

Synthesis of nano-sized LiNi0.8Co0.2O2 via a reverse-microemulsion route
journal, November 2002

  • Lu, Chung-Hsin; Wang, Hsien-Cheng
  • Journal of Materials Chemistry, Vol. 13, Issue 2
  • DOI: 10.1039/b204394g

Novel LiNi[sub 1−x]Ti[sub x/2]Mg[sub x/2]O[sub 2] Compounds as Cathode Materials for Safer Lithium-Ion Batteries
journal, January 1999

  • Gao, Yuan
  • Electrochemical and Solid-State Letters, Vol. 1, Issue 3
  • DOI: 10.1149/1.1390656

Challenges in the development of advanced Li-ion batteries: a review
journal, January 2011

  • Etacheri, Vinodkumar; Marom, Rotem; Elazari, Ran
  • Energy & Environmental Science, Vol. 4, Issue 9
  • DOI: 10.1039/c1ee01598b

On the Performance of LiNi[sub 1/3]Mn[sub 1/3]Co[sub 1/3]O[sub 2] Nanoparticles as a Cathode Material for Lithium-Ion Batteries
journal, January 2009

  • Sclar, Hadar; Kovacheva, Daniela; Zhecheva, Ekaterina
  • Journal of The Electrochemical Society, Vol. 156, Issue 11
  • DOI: 10.1149/1.3212850

Electrochemical Shock in Ion-Intercalation Materials with Limited Solid-Solubility
journal, January 2013

  • Woodford, William H.; Chiang, Yet-Ming; Carter, W. Craig
  • Journal of The Electrochemical Society, Vol. 160, Issue 8
  • DOI: 10.1149/2.104308jes

A novel method for synthesis of layered LiNi1/3Mn1/3Co1/3O2 as cathode material for lithium-ion battery
journal, April 2010


Multiscale electronic transport in Li1+xNi1/3−uCo1/3−vMn1/3−wO2: a broadband dielectric study from 40 Hz to 10 GHz
journal, January 2013

  • Seid, K. A.; Badot, J. C.; Dubrunfaut, O.
  • Physical Chemistry Chemical Physics, Vol. 15, Issue 45
  • DOI: 10.1039/c3cp52384e

Structural Instability of Delithiated Li[sub 1−x]Ni[sub 1−y]Co[sub y]O[sub 2] Cathodes
journal, January 2001

  • Chebiam, R. V.; Prado, F.; Manthiram, A.
  • Journal of The Electrochemical Society, Vol. 148, Issue 1
  • DOI: 10.1149/1.1339029

In Situ Raman Microscopy of Individual LiNi 0.8 Co 0.15 Al 0.05 O 2 Particles in a Li-Ion Battery Composite Cathode
journal, January 2005

  • Lei, Jinglei; McLarnon, Frank; Kostecki, Robert
  • The Journal of Physical Chemistry B, Vol. 109, Issue 2
  • DOI: 10.1021/jp046027c

High Rate Capability of Li(Ni 1/3 Mn 1/3 Co 1/3 )O 2 Electrode for Li-Ion Batteries
journal, January 2012

  • Wu, Shao-Ling; Zhang, Wei; Song, Xiangyun
  • Journal of The Electrochemical Society, Vol. 159, Issue 4
  • DOI: 10.1149/2.062204jes

Electrochemical characteristics of LiNi1−xCoxO2 as positive electrode materials for lithium secondary batteries
journal, December 2001


On the Theory of Mixed Conduction with Special Reference to Conduction in Silver Sulfide Group Semiconductors
journal, November 1961

  • Yokota, Isaaki
  • Journal of the Physical Society of Japan, Vol. 16, Issue 11
  • DOI: 10.1143/JPSJ.16.2213

Ab initio study of the migration of small polarons in olivine Li x FePO 4 and their association with lithium ions and vacancies
journal, March 2006


Factors that affect Li mobility in layered lithium transition metal oxides
journal, September 2006


Works referencing / citing this record:

Layered Oxide, Graphite and Silicon-Graphite Electrodes for Lithium-Ion Cells: Effect of Electrolyte Composition and Cycling Windows
journal, October 2016

  • Klett, Matilda; Gilbert, James A.; Pupek, Krzysztof Z.
  • Journal of The Electrochemical Society, Vol. 164, Issue 1
  • DOI: 10.1149/2.0131701jes

Solid Solutions in the Li–Ni–Mn–Co–O System
journal, February 2019


Green electrode processing using a seaweed-derived mesoporous carbon additive and binder for LiMn 2 O 4 and LiNi 1/3 Mn 1/3 Co 1/3 O 2 lithium ion battery electrodes
journal, January 2019

  • Kim, Sanghoon; De bruyn, Mario; Louvain, Nicolas
  • Sustainable Energy & Fuels, Vol. 3, Issue 2
  • DOI: 10.1039/c8se00483h

Mesoscale Electrochemical Performance Simulation of 3D Interpenetrating Lithium-Ion Battery Electrodes
journal, January 2019

  • Trembacki, Bradley; Duoss, Eric; Oxberry, Geoffrey
  • Journal of The Electrochemical Society, Vol. 166, Issue 6
  • DOI: 10.1149/2.0031906jes

Mechanical, Electrical, and Ionic Behavior of Lithium‐Ion Battery Electrodes via Discrete Element Method Simulations
journal, April 2019

  • Sangrós Giménez, Clara; Schilde, Carsten; Froböse, Linus
  • Energy Technology, Vol. 8, Issue 2
  • DOI: 10.1002/ente.201900180

Narrowing the Gap between Theoretical and Practical Capacities in Li-Ion Layered Oxide Cathode Materials
journal, July 2017

  • Radin, Maxwell D.; Hy, Sunny; Sina, Mahsa
  • Advanced Energy Materials, Vol. 7, Issue 20
  • DOI: 10.1002/aenm.201602888

Direct Determination of Diffusion Coefficients in Commercial Li-Ion Batteries
journal, January 2018

  • Cabañero, Maria Angeles; Boaretto, Nicola; Röder, Manuel
  • Journal of The Electrochemical Society, Vol. 165, Issue 5
  • DOI: 10.1149/2.0301805jes

Effects of microstructure on fracture strength and conductivity of sintered NMC333
journal, October 2019

  • Huddleston, William; Dynys, Frederick; Sehirlioglu, Alp
  • Journal of the American Ceramic Society, Vol. 103, Issue 3
  • DOI: 10.1111/jace.16829

Energy storage through intercalation reactions: electrodes for rechargeable batteries
journal, December 2016

  • Massé, Robert C.; Liu, Chaofeng; Li, Yanwei
  • National Science Review, Vol. 4, Issue 1
  • DOI: 10.1093/nsr/nww093

Cycling Behavior of NCM523/Graphite Lithium-Ion Cells in the 3–4.4 V Range: Diagnostic Studies of Full Cells and Harvested Electrodes
journal, September 2016

  • Gilbert, James A.; Bareño, Javier; Spila, Timothy
  • Journal of The Electrochemical Society, Vol. 164, Issue 1
  • DOI: 10.1149/2.0081701jes

Mixed Electronic and Ionic Conduction Properties of Lithium Lanthanum Titanate
journal, January 2020

  • Wang, Michael J.; Wolfenstine, Jeffrey B.; Sakamoto, Jeff
  • Advanced Functional Materials, Vol. 30, Issue 10
  • DOI: 10.1002/adfm.201909140

Porous Electrode Model with Particle Stress Effects for Li(Ni 1/3 Co 1/3 Mn 1/3 )O 2 Electrode
journal, January 2019

  • Ko, Jing Ying; Varini, Maria; Klett, Matilda
  • Journal of The Electrochemical Society, Vol. 166, Issue 13
  • DOI: 10.1149/2.0661913jes

Nonstoichiometry and Li‐ion transport in lithium zirconate: The role of oxygen vacancies
journal, April 2018

  • Zhan, Xiaowen; Cheng, Yang‐Tse; Shirpour, Mona
  • Journal of the American Ceramic Society, Vol. 101, Issue 9
  • DOI: 10.1111/jace.15583

Voltage-Relaxation GITT and Reverse Monte Carlo to Determine Lithium Diffusion and Distribution in TiO 2 and Highly-Ordered Nanoporous Hard Carbons
journal, January 2018

  • Jayawardana, Waruni; Carr, Christopher L.; Zhao, Dongxue
  • Journal of The Electrochemical Society, Vol. 165, Issue 11
  • DOI: 10.1149/2.1121811jes

Impact of Pore Tortuosity on Electrode Kinetics in Lithium Battery Electrodes: Study in Directionally Freeze-Cast LiNi 0.8 Co 0.15 Al 0.05 O 2 (NCA)
journal, January 2018

  • Delattre, Benjamin; Amin, Ruhul; Sander, Jonathan
  • Journal of The Electrochemical Society, Vol. 165, Issue 2
  • DOI: 10.1149/2.1321802jes

An Ab Initio and Kinetic Monte Carlo Simulation Study of Lithium Ion Diffusion on Graphene
journal, July 2017

  • Zhong, Kehua; Yang, Yanmin; Xu, Guigui
  • Materials, Vol. 10, Issue 7
  • DOI: 10.3390/ma10070761