DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Engineering the surface of LiCoO2 electrodes using atomic layer deposition for stable high-voltage lithium ion batteries

Abstract

Here, developing advanced technologies to stabilize positive electrodes of lithium ion batteries under high-voltage operation is becoming increasingly important, owing to the potential to achieve substantially enhanced energy density for applications such as portable electronics and electrical vehicles. Here, we deposited chemically inert and ionically conductive LiAlO2 interfacial layers on LiCoO2 electrodes using the atomic layer deposition technique. During prolonged cycling at high-voltage, the LiAlO2 coating not only prevented interfacial reactions between the LiCoO2 electrode and electrolyte, as confirmed by electrochemical impedance spectroscopy and Raman characterizations, but also allowed lithium ions to freely diffuse into LiCoO2 without sacrificing the power density. As a result, a capacity value close to 200 mA·h·g–1 was achieved for the LiCoO2 electrodes with commercial level loading densities, cycled at the cut-off potential of 4.6 V vs. Li+/Li for 50 stable cycles; this represents a 40% capacity gain, compared with the values obtained for commercial samples cycled at the cut-off potential of 4.2 V vs. Li+/Li.

Authors:
 [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [2]
  1. Stanford Univ., Stanford, CA (United States)
  2. Stanford Univ., Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States)
Publication Date:
Research Org.:
SLAC National Accelerator Lab., Menlo Park, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1419766
Grant/Contract Number:  
AC02-76SF00515
Resource Type:
Accepted Manuscript
Journal Name:
Nano Research
Additional Journal Information:
Journal Volume: 10; Journal Issue: 11; Journal ID: ISSN 1998-0124
Publisher:
Springer
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; lithium ion batteries; lithium cobalt oxide; atomic layer deposition

Citation Formats

Xie, Jin, Zhao, Jie, Liu, Yayuan, Wang, Haotian, Liu, Chong, Wu, Tong, Hsu, Po -Chun, Lin, Dingchang, Jin, Yang, and Cui, Yi. Engineering the surface of LiCoO2 electrodes using atomic layer deposition for stable high-voltage lithium ion batteries. United States: N. p., 2017. Web. doi:10.1007/s12274-017-1588-1.
Xie, Jin, Zhao, Jie, Liu, Yayuan, Wang, Haotian, Liu, Chong, Wu, Tong, Hsu, Po -Chun, Lin, Dingchang, Jin, Yang, & Cui, Yi. Engineering the surface of LiCoO2 electrodes using atomic layer deposition for stable high-voltage lithium ion batteries. United States. https://doi.org/10.1007/s12274-017-1588-1
Xie, Jin, Zhao, Jie, Liu, Yayuan, Wang, Haotian, Liu, Chong, Wu, Tong, Hsu, Po -Chun, Lin, Dingchang, Jin, Yang, and Cui, Yi. Tue . "Engineering the surface of LiCoO2 electrodes using atomic layer deposition for stable high-voltage lithium ion batteries". United States. https://doi.org/10.1007/s12274-017-1588-1. https://www.osti.gov/servlets/purl/1419766.
@article{osti_1419766,
title = {Engineering the surface of LiCoO2 electrodes using atomic layer deposition for stable high-voltage lithium ion batteries},
author = {Xie, Jin and Zhao, Jie and Liu, Yayuan and Wang, Haotian and Liu, Chong and Wu, Tong and Hsu, Po -Chun and Lin, Dingchang and Jin, Yang and Cui, Yi},
abstractNote = {Here, developing advanced technologies to stabilize positive electrodes of lithium ion batteries under high-voltage operation is becoming increasingly important, owing to the potential to achieve substantially enhanced energy density for applications such as portable electronics and electrical vehicles. Here, we deposited chemically inert and ionically conductive LiAlO2 interfacial layers on LiCoO2 electrodes using the atomic layer deposition technique. During prolonged cycling at high-voltage, the LiAlO2 coating not only prevented interfacial reactions between the LiCoO2 electrode and electrolyte, as confirmed by electrochemical impedance spectroscopy and Raman characterizations, but also allowed lithium ions to freely diffuse into LiCoO2 without sacrificing the power density. As a result, a capacity value close to 200 mA·h·g–1 was achieved for the LiCoO2 electrodes with commercial level loading densities, cycled at the cut-off potential of 4.6 V vs. Li+/Li for 50 stable cycles; this represents a 40% capacity gain, compared with the values obtained for commercial samples cycled at the cut-off potential of 4.2 V vs. Li+/Li.},
doi = {10.1007/s12274-017-1588-1},
journal = {Nano Research},
number = 11,
volume = 10,
place = {United States},
year = {Tue Jul 25 00:00:00 EDT 2017},
month = {Tue Jul 25 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 63 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Ultrathin Coatings on Nano-LiCoO2 for Li-Ion Vehicular Applications
journal, February 2011

  • Scott, Isaac D.; Jung, Yoon Seok; Cavanagh, Andrew S.
  • Nano Letters, Vol. 11, Issue 2, p. 414-418
  • DOI: 10.1021/nl1030198

AC impedance of the Li(1−x)CoO2 electrode
journal, January 1986


Characterization of commercially available lithium-ion batteries
journal, January 1998


Atomic Layer Deposition of the Solid Electrolyte LiPON
journal, July 2015


Challenges for Rechargeable Li Batteries
journal, February 2010

  • Goodenough, John B.; Kim, Youngsik
  • Chemistry of Materials, Vol. 22, Issue 3, p. 587-603
  • DOI: 10.1021/cm901452z

The Raman spectra of Co 3 O 4
journal, March 1988

  • Hadjiev, V. G.; Iliev, M. N.; Vergilov, I. V.
  • Journal of Physics C: Solid State Physics, Vol. 21, Issue 7
  • DOI: 10.1088/0022-3719/21/7/007

Novel LiCoO2 Cathode Material with Al2O3 Coating for a Li Ion Cell
journal, December 2000

  • Cho, Jaephil; Kim, Yong Jeong; Park, Byungwoo
  • Chemistry of Materials, Vol. 12, Issue 12, p. 3788-3791
  • DOI: 10.1021/cm000511k

Lithium Batteries and Cathode Materials
journal, October 2004

  • Whittingham, M. Stanley
  • Chemical Reviews, Vol. 104, Issue 10, p. 4271-4302
  • DOI: 10.1021/cr020731c

Issues and challenges facing rechargeable lithium batteries
journal, November 2001

  • Tarascon, J.-M.; Armand, M.
  • Nature, Vol. 414, Issue 6861, p. 359-367
  • DOI: 10.1038/35104644

Raman Microspectrometry Applied to the Study of Electrode Materials for Lithium Batteries
journal, March 2010

  • Baddour-Hadjean, Rita; Pereira-Ramos, Jean-Pierre
  • Chemical Reviews, Vol. 110, Issue 3
  • DOI: 10.1021/cr800344k

AC Impedance Analysis of Polycrystalline Insertion Electrodes: Application to Li[sub 1−x]CoO[sub 2]
journal, January 1985

  • Thomas, M. G. S. R.
  • Journal of The Electrochemical Society, Vol. 132, Issue 7
  • DOI: 10.1149/1.2114158

Unexpected Improved Performance of ALD Coated LiCoO 2 /Graphite Li-Ion Batteries
journal, September 2012

  • Jung, Yoon Seok; Lu, Peng; Cavanagh, Andrew S.
  • Advanced Energy Materials, Vol. 3, Issue 2
  • DOI: 10.1002/aenm.201200370

Insertion Electrode Materials for Rechargeable Lithium Batteries
journal, July 1998


Zero-Strain Intercalation Cathode for Rechargeable Li-Ion Cell
journal, September 2001


LiAlO-coated LiCoO as cathode material for lithium ion batteries
journal, March 2005


Enhanced Stability of LiCoO2 Cathodes in Lithium-Ion Batteries Using Surface Modification by Atomic Layer Deposition
journal, January 2010

  • Jung, Yoon Seok; Cavanagh, Andrew S.; Dillon, Anne C.
  • Journal of The Electrochemical Society, Vol. 157, Issue 1, p. A75-A81
  • DOI: 10.1149/1.3258274

Amorphous Metal Fluoride Passivation Coatings Prepared by Atomic Layer Deposition on LiCoO 2 for Li-Ion Batteries
journal, March 2015


Atomic Layer Deposition of Lithium Tantalate Solid-State Electrolytes
journal, September 2013

  • Liu, Jian; Banis, Mohammad N.; Li, Xifei
  • The Journal of Physical Chemistry C, Vol. 117, Issue 39
  • DOI: 10.1021/jp4063302

Application of A-C Techniques to the Study of Lithium Diffusion in Tungsten Trioxide Thin Films
journal, January 1980

  • Ho, C.
  • Journal of The Electrochemical Society, Vol. 127, Issue 2
  • DOI: 10.1149/1.2129668

Surface characterization of the high voltage LiCoO2/Li cell by X-ray photoelectron spectroscopy and 2D correlation analysis
journal, May 2010


Atomic Layer Deposition: An Overview
journal, January 2010

  • George, Steven M.
  • Chemical Reviews, Vol. 110, Issue 1, p. 111-131
  • DOI: 10.1021/cr900056b

Cobalt dissolution in LiCoO2-based non-aqueous rechargeable batteries
journal, January 1996


Solid‐State Electrochemical Kinetics of Li‐Ion Intercalation into Li1 − xCoO2: Simultaneous Application of Electroanalytical Techniques SSCV, PITT, and EIS
journal, January 1999

  • Levi, M. D.; Salitra, G.; Markovsky, B.
  • Journal of The Electrochemical Society, Vol. 146, Issue 4, p. 1279-1289
  • DOI: 10.1149/1.1391759

Studies of LiCoO[sub 2] Coated with Metal Oxides
journal, January 2003

  • Chen, Zhaohui; Dahn, J. R.
  • Electrochemical and Solid-State Letters, Vol. 6, Issue 11
  • DOI: 10.1149/1.1611731

Methods to obtain excellent capacity retention in LiCoO2 cycled to 4.5 V
journal, March 2004


Atomic Layer Deposition of Li 2 O–Al 2 O 3 Thin Films
journal, November 2011

  • Aaltonen, Titta; Nilsen, Ola; Magrasó, Anna
  • Chemistry of Materials, Vol. 23, Issue 21
  • DOI: 10.1021/cm200899k

TEM Study of Electrochemical Cycling-Induced Damage and Disorder in LiCoO[sub 2] Cathodes for Rechargeable Lithium Batteries
journal, January 1999

  • Wang, Haifeng
  • Journal of The Electrochemical Society, Vol. 146, Issue 2
  • DOI: 10.1149/1.1391631

LiCoO[sub 2] Cathode Material That Does Not Show a Phase Transition from Hexagonal to Monoclinic Phase
journal, January 2001

  • Cho, Jaephil; Kim, Yong Jeong; Park, Byungwoo
  • Journal of The Electrochemical Society, Vol. 148, Issue 10
  • DOI: 10.1149/1.1397772

Ultrathin Lithium-Ion Conducting Coatings for Increased Interfacial Stability in High Voltage Lithium-Ion Batteries
journal, May 2014

  • Park, Joong Sun; Meng, Xiangbo; Elam, Jeffrey W.
  • Chemistry of Materials, Vol. 26, Issue 10
  • DOI: 10.1021/cm500512n

Electrical characterization of amorphous LiAlO 2 thin films deposited by atomic layer deposition
journal, January 2016

  • Hu, Yang; Ruud, Amund; Miikkulainen, Ville
  • RSC Advances, Vol. 6, Issue 65
  • DOI: 10.1039/C6RA03137D

Lithium ion conduction in rapidly quenched Li 2 O‐Al 2 O 3 , Li 2 O‐Ga 2 O 3 , and Li 2 O‐Bi 2 O 3 glasses
journal, July 1980

  • Glass, A. M.; Nassau, K.
  • Journal of Applied Physics, Vol. 51, Issue 7
  • DOI: 10.1063/1.328164

Surface Reaction of LiCoO<SUB>2</SUB>/Li System under High-Voltage Conditions by X-ray Spectroscopy and Two-Dimensional Correlation Spectroscopy (2D-COS)
journal, March 2011

  • Park, Yeonju; Kim, Nam Hoon; Kim, Jong Myong
  • Applied Spectroscopy, Vol. 65, Issue 3
  • DOI: 10.1366/10-06073

Atomic Layer Deposition of LiF Thin Films from Lithd, Mg(thd) 2 , and TiF 4 Precursors
journal, April 2013

  • Mäntymäki, Miia; Hämäläinen, Jani; Puukilainen, Esa
  • Chemistry of Materials, Vol. 25, Issue 9
  • DOI: 10.1021/cm400046w

Works referencing / citing this record:

Unveiling Nickel Chemistry in Stabilizing High‐Voltage Cobalt‐Rich Cathodes for Lithium‐Ion Batteries
journal, November 2019

  • Yoon, Moonsu; Dong, Yanhao; Yoo, Youngbin
  • Advanced Functional Materials, Vol. 30, Issue 6
  • DOI: 10.1002/adfm.201907903

Improving the electrochemical performance of a Cr-modified LiNi 1/3 Co 1/3−x Cr x Mn 1/3 O 2 cathode for lithium-ion batteries
journal, August 2019


Engineering stable interfaces for three-dimensional lithium metal anodes
journal, July 2018


Self-Generated Coating of LiCoO 2 by Washing and Heat Treatment without Coating Precursors
journal, November 2018

  • Jeong, Seonghun; Kim, Jaemin; Mun, Junyoung
  • Journal of The Electrochemical Society, Vol. 166, Issue 3
  • DOI: 10.1149/2.0071903jes

Improved Cycling Stability of LiCoO2 at 4.5 V via Surface Modification of Electrodes with Conductive Amorphous LLTO Thin Film
journal, May 2020