DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: From amorphous to nanocrystalline: the effect of nanograins in amorphous matrix on the thermal conductivity of hot-wire chemical-vapor deposited silicon films

Abstract

Here, we have measured the thermal conductivity of amorphous and nanocrystalline silicon films with varying crystalline content from 85K to room temperature. The films were prepared by the hot-wire chemical-vapor deposition, where the crystalline volume fraction is determined by the hydrogen (H2) dilution ratio to the processing silane gas (SiH4), R=H2/SiH4. We varied R from 1 to 10, where the films transform from amorphous for R < 3 to mostly nanocrystalline for larger R. Structural analyses show that the nanograins, averaging from 2 to 9nm in sizes with increasing R, are dispersed in the amorphous matrix. The crystalline volume fraction increases from 0 to 65% as R increases from 1 to 10. The thermal conductivities of the two amorphous silicon films are similar and consistent with the most previous reports with thicknesses no larger than a few um deposited by a variety of techniques. The thermal conductivities of the three nanocrystalline silicon films are also similar, but are about 50-70% higher than those of their amorphous counterparts. The heat conduction in nanocrystalline silicon films can be understood as the combined contribution in both amorphous and nanocrystalline phases, where increased conduction through improved nanocrystalline percolation path outweighs increased interface scattering betweenmore » silicon nanocrystals and the amorphous matrix.« less

Authors:
 [1];  [2];  [1];  [1];  [1];  [1];  [1];  [3];  [3]; ORCiD logo [1]
  1. Naval Research Lab., Washington, D.C. (United States)
  2. Sotera Defense Solutions Inc., Herndon, VA (United States)
  3. National Renewable Energy Lab. (NREL), Golden, CO (United States)
Publication Date:
Research Org.:
National Renewable Energy Lab. (NREL), Golden, CO (United States)
Sponsoring Org.:
US Department of the Navy, Office of Naval Research (ONR); USDOE
OSTI Identifier:
1416517
Report Number(s):
NREL/JA-5J00-70759
Journal ID: ISSN 0953-8984; TRN: US1800950
Grant/Contract Number:  
AC36-08GO28308
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Physics. Condensed Matter
Additional Journal Information:
Journal Volume: 30; Journal Issue: 8; Journal ID: ISSN 0953-8984
Publisher:
IOP Publishing
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; thermal conductivity; amorphous silicon films; nanocrystalline silicon films

Citation Formats

Kearney, B. T., Jugdersuren, B., Queen, D. R., Metcalf, Thomas H., Culbertson, J. C., Desario, P. A., Stroud, R. M., Nemeth, William M., Wang, Q., and Liu, Xiao. From amorphous to nanocrystalline: the effect of nanograins in amorphous matrix on the thermal conductivity of hot-wire chemical-vapor deposited silicon films. United States: N. p., 2017. Web. doi:10.1088/1361-648X/aaa43f.
Kearney, B. T., Jugdersuren, B., Queen, D. R., Metcalf, Thomas H., Culbertson, J. C., Desario, P. A., Stroud, R. M., Nemeth, William M., Wang, Q., & Liu, Xiao. From amorphous to nanocrystalline: the effect of nanograins in amorphous matrix on the thermal conductivity of hot-wire chemical-vapor deposited silicon films. United States. https://doi.org/10.1088/1361-648X/aaa43f
Kearney, B. T., Jugdersuren, B., Queen, D. R., Metcalf, Thomas H., Culbertson, J. C., Desario, P. A., Stroud, R. M., Nemeth, William M., Wang, Q., and Liu, Xiao. Thu . "From amorphous to nanocrystalline: the effect of nanograins in amorphous matrix on the thermal conductivity of hot-wire chemical-vapor deposited silicon films". United States. https://doi.org/10.1088/1361-648X/aaa43f. https://www.osti.gov/servlets/purl/1416517.
@article{osti_1416517,
title = {From amorphous to nanocrystalline: the effect of nanograins in amorphous matrix on the thermal conductivity of hot-wire chemical-vapor deposited silicon films},
author = {Kearney, B. T. and Jugdersuren, B. and Queen, D. R. and Metcalf, Thomas H. and Culbertson, J. C. and Desario, P. A. and Stroud, R. M. and Nemeth, William M. and Wang, Q. and Liu, Xiao},
abstractNote = {Here, we have measured the thermal conductivity of amorphous and nanocrystalline silicon films with varying crystalline content from 85K to room temperature. The films were prepared by the hot-wire chemical-vapor deposition, where the crystalline volume fraction is determined by the hydrogen (H2) dilution ratio to the processing silane gas (SiH4), R=H2/SiH4. We varied R from 1 to 10, where the films transform from amorphous for R < 3 to mostly nanocrystalline for larger R. Structural analyses show that the nanograins, averaging from 2 to 9nm in sizes with increasing R, are dispersed in the amorphous matrix. The crystalline volume fraction increases from 0 to 65% as R increases from 1 to 10. The thermal conductivities of the two amorphous silicon films are similar and consistent with the most previous reports with thicknesses no larger than a few um deposited by a variety of techniques. The thermal conductivities of the three nanocrystalline silicon films are also similar, but are about 50-70% higher than those of their amorphous counterparts. The heat conduction in nanocrystalline silicon films can be understood as the combined contribution in both amorphous and nanocrystalline phases, where increased conduction through improved nanocrystalline percolation path outweighs increased interface scattering between silicon nanocrystals and the amorphous matrix.},
doi = {10.1088/1361-648X/aaa43f},
journal = {Journal of Physics. Condensed Matter},
number = 8,
volume = 30,
place = {United States},
year = {Thu Dec 28 00:00:00 EST 2017},
month = {Thu Dec 28 00:00:00 EST 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 10 works
Citation information provided by
Web of Science

Figures / Tables:

Table 1 Table 1: HWCVD a-Si and nc-Si film names, parameters, and thermal conductivity at 300 K. The average grain size is determined by XRD except for R = 6 where it is estimated from TEM. The crystalline volume content is determined by Raman spectra.

Save / Share:

Works referenced in this record:

Material and solar cell research in microcrystalline silicon
journal, July 2003


Tunable Properties of Hydrogenated Amorphous/Nanocrystalline Silicon Thin-Films for Enhanced MEMS Resonators Performance
journal, June 2014

  • Mouro, Joao; Gualdino, Alexandra; Chu, Virginia
  • Journal of Microelectromechanical Systems, Vol. 23, Issue 3
  • DOI: 10.1109/JMEMS.2013.2286453

High-mobility nanocrystalline silicon thin-film transistors fabricated by plasma-enhanced chemical vapor deposition
journal, May 2005

  • Lee, Czang-Ho; Sazonov, Andrei; Nathan, Arokia
  • Applied Physics Letters, Vol. 86, Issue 22
  • DOI: 10.1063/1.1942641

Structure and thermoelectric properties of boron doped nanocrystalline Si0.8Ge0.2 thin film
journal, September 2006

  • Takashiri, M.; Borca-Tasciuc, T.; Jacquot, A.
  • Journal of Applied Physics, Vol. 100, Issue 5
  • DOI: 10.1063/1.2337392

Thermoelectric effect in laser annealed printed nanocrystalline silicon layers
journal, November 2007

  • Lechner, Robert; Wiggers, Hartmut; Ebbers, André
  • physica status solidi (RRL) – Rapid Research Letters, Vol. 1, Issue 6
  • DOI: 10.1002/pssr.200701198

Simultaneous increase in electrical conductivity and Seebeck coefficient in highly boron-doped nanocrystalline Si
journal, April 2013


Significant enhancement of the thermoelectric figure of merit of polycrystalline Si films by reducing grain size
journal, July 2016


Nanostructured Bulk Silicon as an Effective Thermoelectric Material
journal, August 2009

  • Bux, Sabah K.; Blair, Richard G.; Gogna, Pawan K.
  • Advanced Functional Materials, Vol. 19, Issue 15, p. 2445-2452
  • DOI: 10.1002/adfm.200900250

Improved thermoelectric performance of hot pressed nanostructured n-type SiGe bulk alloys
journal, January 2014

  • Basu, Ranita; Bhattacharya, Shovit; Bhatt, Ranu
  • Journal of Materials Chemistry A, Vol. 2, Issue 19
  • DOI: 10.1039/c3ta14259k

Thermal conductivity of a -Si:H thin films
journal, September 1994


Thermal Conductivity and Specific Heat of Thin-Film Amorphous Silicon
journal, February 2006


Broadband phonon mean free path contributions to thermal conductivity measured using frequency domain thermoreflectance
journal, March 2013

  • Regner, Keith T.; Sellan, Daniel P.; Su, Zonghui
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms2630

Size effects on the thermal conductivity of amorphous silicon thin films
journal, April 2016


Unusually High and Anisotropic Thermal Conductivity in Amorphous Silicon Nanostructures
journal, February 2017


Thermal conductivity of thin films: Measurements and understanding
journal, May 1989

  • Cahill, David G.; Fischer, Henry E.; Klitsner, Tom
  • Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, Vol. 7, Issue 3
  • DOI: 10.1116/1.576265

High Thermal Conductivity of a Hydrogenated Amorphous Silicon Film
journal, January 2009


Anomalously high thermal conductivity of amorphous Si deposited by hot-wire chemical vapor deposition
journal, March 2010


Thermal Conductivity of Glasses: Theory and Application to Amorphous Si
journal, February 1989


Molecular-dynamics simulation of thermal conductivity in amorphous silicon
journal, March 1991


Thermal conductivity and localization in glasses: Numerical study of a model of amorphous silicon
journal, November 1993


Diffusons, locons and propagons: Character of atomie yibrations in amorphous Si
journal, November 1999

  • Allen, Philip B.; Feldman, Joseph L.; Fabian, Jaroslav
  • Philosophical Magazine B, Vol. 79, Issue 11-12
  • DOI: 10.1080/13642819908223054

Heat transport in amorphous silicon: Interplay between morphology and disorder
journal, April 2011

  • He, Yuping; Donadio, Davide; Galli, Giulia
  • Applied Physics Letters, Vol. 98, Issue 14
  • DOI: 10.1063/1.3574366

Thermal conductivity accumulation in amorphous silica and amorphous silicon
journal, April 2014


Non-negligible Contributions to Thermal Conductivity From Localized Modes in Amorphous Silicon Dioxide
journal, October 2016


Thermal Conductivity of Nanocrystalline Silicon: Importance of Grain Size and Frequency-Dependent Mean Free Paths
journal, June 2011

  • Wang, Zhaojie; Alaniz, Joseph E.; Jang, Wanyoung
  • Nano Letters, Vol. 11, Issue 6
  • DOI: 10.1021/nl1045395

Thermal conductivity of amorphous and nanocrystalline silicon films prepared by hot-wire chemical-vapor deposition
journal, July 2017


A thermodynamic criterion of the crystalline-to-amorphous transition in silicon
journal, January 1982


Vibrations and thermal transport in nanocrystalline silicon
journal, December 2006


Thermal Conductivity Reduction and Thermoelectric Figure of Merit Increase by Embedding Nanoparticles in Crystalline Semiconductors
journal, February 2006


Reducing Thermal Conductivity of Crystalline Solids at High Temperature Using Embedded Nanostructures
journal, July 2008

  • Kim, Woochul; Singer, Suzanne L.; Majumdar, Arun
  • Nano Letters, Vol. 8, Issue 7
  • DOI: 10.1021/nl080189t

Precise control of thermal conductivity at the nanoscale through individual phonon-scattering barriers
journal, May 2010

  • Pernot, G.; Stoffel, M.; Savic, I.
  • Nature Materials, Vol. 9, Issue 6
  • DOI: 10.1038/nmat2752

The best nanoparticle size distribution for minimum thermal conductivity
journal, March 2015

  • Zhang, Hang; Minnich, Austin J.
  • Scientific Reports, Vol. 5, Issue 1
  • DOI: 10.1038/srep08995

Thermal insulator transition induced by interface scattering
journal, October 2016

  • Slovick, Brian A.; Krishnamurthy, Srini
  • Applied Physics Letters, Vol. 109, Issue 14
  • DOI: 10.1063/1.4964406

Photoluminescence and Raman studies in thin-film materials: Transition from amorphous to microcrystalline silicon
journal, July 1999

  • Yue, Guozhen; Lorentzen, J. D.; Lin, Jing
  • Applied Physics Letters, Vol. 75, Issue 4
  • DOI: 10.1063/1.124426

Optical and electronic properties of microcrystalline silicon as a function of microcrystallinity
journal, February 2000

  • Han, Daxing; Yue, Guozhen; Lorentzen, J. D.
  • Journal of Applied Physics, Vol. 87, Issue 4
  • DOI: 10.1063/1.372108

Microstructure of amorphous and microcrystalline Si and SiGe alloys using X-rays and neutrons
journal, July 2003


Internal friction of amorphous and nanocrystalline silicon at low temperatures
journal, December 2006

  • Liu, Xiao; Spiel, C. L.; Merithew, R. D.
  • Materials Science and Engineering: A, Vol. 442, Issue 1-2
  • DOI: 10.1016/j.msea.2006.01.146

Heat transport in thin dielectric films
journal, March 1997

  • Lee, S. -M.; Cahill, David G.
  • Journal of Applied Physics, Vol. 81, Issue 6
  • DOI: 10.1063/1.363923

Experimental determination of the nanocrystalline volume fraction in silicon thin films from Raman spectroscopy
journal, May 1988

  • Bustarret, E.; Hachicha, M. A.; Brunel, M.
  • Applied Physics Letters, Vol. 52, Issue 20
  • DOI: 10.1063/1.99054

Phonon scattering at silicon crystal surfaces
journal, October 1987


Thermal conductivity of amorphous silicon
journal, March 1983

  • Goldsmid, H. J.; Kaila, M. M.; Paul, G. L.
  • Physica Status Solidi (a), Vol. 76, Issue 1
  • DOI: 10.1002/pssa.2210760156

Thermal conductivity and interface thermal resistance of Si film on Si substrate determined by photothermal displacement interferometry
journal, September 1992

  • Kuo, B. S. W.; Li, J. C. M.; Schmid, A. W.
  • Applied Physics A Solids and Surfaces, Vol. 55, Issue 3
  • DOI: 10.1007/BF00348399

Thermal Conductivity of Amorphous Silicon
journal, May 1996

  • Wada, Hiroshi; Kamijoh, Takeshi
  • Japanese Journal of Applied Physics, Vol. 35, Issue Part 2, No. 5B
  • DOI: 10.1143/JJAP.35.L648

Thermal conductivity of amorphous silicon thin films
journal, June 2002

  • Moon, Seungjae; Hatano, Mutsuko; Lee, Minghong
  • International Journal of Heat and Mass Transfer, Vol. 45, Issue 12
  • DOI: 10.1016/S0017-9310(01)00347-7

Phonons with long mean free paths in a-Si and a-Ge
journal, February 2014

  • Zhan, Tianzhuo; Xu, Yibin; Goto, Masahiro
  • Applied Physics Letters, Vol. 104, Issue 7
  • DOI: 10.1063/1.4866799

Theoretical phonon thermal conductivity of Si/Ge superlattice nanowires
journal, January 2004

  • Dames, C.; Chen, G.
  • Journal of Applied Physics, Vol. 95, Issue 2
  • DOI: 10.1063/1.1631734

Status of Cat-CVD (Hot Wire CVD) research in the United States
journal, September 2001


Amorphous Solid without Low Energy Excitations
journal, June 1997


Thermal conductivity of individual silicon nanowires
journal, October 2003

  • Li, Deyu; Wu, Yiying; Kim, Philip
  • Applied Physics Letters, Vol. 83, Issue 14, p. 2934-2936
  • DOI: 10.1063/1.1616981

Nanocrystalline inclusions as a low-pass filter for thermal transport in a -Si
journal, September 2015


Effect of crystalline/amorphous interfaces on thermal transport across confined thin films and superlattices
journal, June 2016

  • Giri, Ashutosh; Braun, Jeffrey L.; Hopkins, Patrick E.
  • Journal of Applied Physics, Vol. 119, Issue 23
  • DOI: 10.1063/1.4953683

Phonon Transport at Crystalline Si/Ge Interfaces: The Role of Interfacial Modes of Vibration
journal, March 2016

  • Gordiz, Kiarash; Henry, Asegun
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep23139

Phonon transport at interfaces between different phases of silicon and germanium
journal, January 2017

  • Gordiz, Kiarash; Henry, Asegun
  • Journal of Applied Physics, Vol. 121, Issue 2
  • DOI: 10.1063/1.4973573

Thermal transport in nanocrystalline Si and SiGe by ab initio based Monte Carlo simulation
journal, March 2017

  • Yang, Lina; Minnich, Austin J.
  • Scientific Reports, Vol. 7, Issue 1
  • DOI: 10.1038/srep44254

Works referencing / citing this record:

Thermoelectric Properties of Nanocrystalline Silicon Films Prepared by Hot-Wire and Plasma-Enhanced Chemical-Vapor Depositions
journal, June 2019

  • Jugdersuren, Battogtokh; Kearney, Brian T.; Liu, Xiao
  • Journal of Electronic Materials, Vol. 48, Issue 8
  • DOI: 10.1007/s11664-019-07262-y

Hierarchical nanostructuring approaches for thermoelectric materials with high power factors
journal, January 2019


Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.