DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Oxygen Activation at the Active Site of a Fungal Lytic Polysaccharide Monooxygenase

Abstract

Lytic polysaccharide monooxygenases have attracted vast attention owing to their abilities to disrupt glycosidic bonds via oxidation instead of hydrolysis and to enhance enzymatic digestion of recalcitrant substrates including chitin and cellulose. Here, we determined the high-resolution X-ray crystal structures of an enzyme from Neurospora crassa in the resting state and of a copper(II) dioxo intermediate complex formed in the absence of substrate. X-ray crystal structures also revealed “pre-bound” molecular oxygen adjacent to the active site. An examination of protonation states enabled by neutron crystallography and density functional theory calculations identified a role for a conserved histidine in promoting oxygen activation. Our results provide a new structural description of oxygen activation by substrate free lytic polysaccharide monooxygenases and provide insights that can be extended to reactivity in the enzyme–substrate complex.

Authors:
ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [1]
  1. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Dept. of Molecular and Structural Biochemistry
  2. Univ. of Tennessee, Knoxville, TN (United States). Dept. of Biochemisty, Cellular and Molecular Biology; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Knoxville and Computatinal Biology Inst., Computer Science, Mathematics Division
Publication Date:
Research Org.:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Biological and Environmental Research (BER); National Science Foundation (NSF); National Institutes of Health (NIH)
OSTI Identifier:
1407721
Grant/Contract Number:  
AC05-00OR22725; MRI 09229719; IGERT 1069091; GM105978
Resource Type:
Accepted Manuscript
Journal Name:
Angewandte Chemie
Additional Journal Information:
Journal Volume: 129; Journal Issue: 3; Journal ID: ISSN 0044-8249
Publisher:
German Chemical Society
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; copper; oxidoreductases; oxygen activation; polysaccharide monooxygenases; protein structures

Citation Formats

O'Dell, William B., Agarwal, Pratul K., and Meilleur, Flora. Oxygen Activation at the Active Site of a Fungal Lytic Polysaccharide Monooxygenase. United States: N. p., 2016. Web. doi:10.1002/ange.201610502.
O'Dell, William B., Agarwal, Pratul K., & Meilleur, Flora. Oxygen Activation at the Active Site of a Fungal Lytic Polysaccharide Monooxygenase. United States. https://doi.org/10.1002/ange.201610502
O'Dell, William B., Agarwal, Pratul K., and Meilleur, Flora. Thu . "Oxygen Activation at the Active Site of a Fungal Lytic Polysaccharide Monooxygenase". United States. https://doi.org/10.1002/ange.201610502. https://www.osti.gov/servlets/purl/1407721.
@article{osti_1407721,
title = {Oxygen Activation at the Active Site of a Fungal Lytic Polysaccharide Monooxygenase},
author = {O'Dell, William B. and Agarwal, Pratul K. and Meilleur, Flora},
abstractNote = {Lytic polysaccharide monooxygenases have attracted vast attention owing to their abilities to disrupt glycosidic bonds via oxidation instead of hydrolysis and to enhance enzymatic digestion of recalcitrant substrates including chitin and cellulose. Here, we determined the high-resolution X-ray crystal structures of an enzyme from Neurospora crassa in the resting state and of a copper(II) dioxo intermediate complex formed in the absence of substrate. X-ray crystal structures also revealed “pre-bound” molecular oxygen adjacent to the active site. An examination of protonation states enabled by neutron crystallography and density functional theory calculations identified a role for a conserved histidine in promoting oxygen activation. Our results provide a new structural description of oxygen activation by substrate free lytic polysaccharide monooxygenases and provide insights that can be extended to reactivity in the enzyme–substrate complex.},
doi = {10.1002/ange.201610502},
journal = {Angewandte Chemie},
number = 3,
volume = 129,
place = {United States},
year = {Thu Dec 22 00:00:00 EST 2016},
month = {Thu Dec 22 00:00:00 EST 2016}
}

Works referenced in this record:

Spectroscopic and computational insight into the activation of O2 by the mononuclear Cu center in polysaccharide monooxygenases
journal, June 2014

  • Kjaergaard, C. H.; Qayyum, M. F.; Wong, S. D.
  • Proceedings of the National Academy of Sciences, Vol. 111, Issue 24
  • DOI: 10.1073/pnas.1408115111

Production of four Neurospora crassa lytic polysaccharide monooxygenases in Pichia pastoris monitored by a fluorimetric assay
journal, January 2012

  • Kittl, Roman; Kracher, Daniel; Burgstaller, Daniel
  • Biotechnology for Biofuels, Vol. 5, Issue 1
  • DOI: 10.1186/1754-6834-5-79

Structural Basis for Substrate Targeting and Catalysis by Fungal Polysaccharide Monooxygenases
journal, June 2012

  • Li, Xin; Beeson, William T.; Phillips, Christopher M.
  • Structure, Vol. 20, Issue 6, p. 1051-1061
  • DOI: 10.1016/j.str.2012.04.002

Structure of Jahn–Teller distorted solvated copper(ii) ions in solution, and in solids with apparently regular octahedral coordination geometry
journal, January 2002

  • Persson, Ingmar; Persson, Per; Sandström, Magnus
  • Journal of the Chemical Society, Dalton Transactions, Issue 7
  • DOI: 10.1039/b200698g

Quantum mechanical calculations suggest that lytic polysaccharide monooxygenases use a copper-oxyl, oxygen-rebound mechanism
journal, December 2013

  • Kim, S.; Stahlberg, J.; Sandgren, M.
  • Proceedings of the National Academy of Sciences, Vol. 111, Issue 1
  • DOI: 10.1073/pnas.1316609111

The IMAGINE instrument: first neutron protein structure and new capabilities for neutron macromolecular crystallography
journal, September 2013

  • Meilleur, Flora; Munshi, Parthapratim; Robertson, Lee
  • Acta Crystallographica Section D Biological Crystallography, Vol. 69, Issue 10
  • DOI: 10.1107/S0907444913019604

Cellobiose Dehydrogenase and a Copper-Dependent Polysaccharide Monooxygenase Potentiate Cellulose Degradation by Neurospora crassa
journal, December 2011

  • Phillips, Christopher M.; Beeson, William T.; Cate, Jamie H.
  • ACS Chemical Biology, Vol. 6, Issue 12, p. 1399-1406
  • DOI: 10.1021/cb200351y

The molecular basis of polysaccharide cleavage by lytic polysaccharide monooxygenases
journal, February 2016

  • Frandsen, Kristian E. H.; Simmons, Thomas J.; Dupree, Paul
  • Nature Chemical Biology, Vol. 12, Issue 4
  • DOI: 10.1038/nchembio.2029

Cellulose Surface Degradation by a Lytic Polysaccharide Monooxygenase and Its Effect on Cellulase Hydrolytic Efficiency
journal, October 2014

  • Eibinger, Manuel; Ganner, Thomas; Bubner, Patricia
  • Journal of Biological Chemistry, Vol. 289, Issue 52
  • DOI: 10.1074/jbc.M114.602227

Catalase improves saccharification of lignocellulose by reducing lytic polysaccharide monooxygenase-associated enzyme inactivation
journal, November 2015


Structural and Electronic Snapshots during the Transition from a Cu(II) to Cu(I) Metal Center of a Lytic Polysaccharide Monooxygenase by X-ray Photoreduction
journal, May 2014

  • Gudmundsson, Mikael; Kim, Seonah; Wu, Miao
  • Journal of Biological Chemistry, Vol. 289, Issue 27, p. 18782-18792
  • DOI: 10.1074/jbc.M114.563494

A high-resolution XAS study of aqueous Cu(II) in liquid and frozen solutions: Pyramidal, polymorphic, and non-centrosymmetric
journal, February 2015

  • Frank, Patrick; Benfatto, Maurizio; Qayyam, Munzarin
  • The Journal of Chemical Physics, Vol. 142, Issue 8
  • DOI: 10.1063/1.4908266

Stimulation of Lignocellulosic Biomass Hydrolysis by Proteins of Glycoside Hydrolase Family 61 Structure and Function of a Large, Enigmatic Family
journal, April 2010

  • Harris, Paul; Welner, Ditte; McFarland, K.
  • Biochemistry, Vol. 49, Issue 15, p. 3305-3316
  • DOI: 10.1021/bi100009p

The carbohydrate-active enzymes database (CAZy) in 2013
journal, November 2013

  • Lombard, Vincent; Golaconda Ramulu, Hemalatha; Drula, Elodie
  • Nucleic Acids Research, Vol. 42, Issue D1
  • DOI: 10.1093/nar/gkt1178

Oxygen Pressurized X-Ray Crystallography: Probing the Dioxygen Binding Site in Cofactorless Urate Oxidase and Implications for Its Catalytic Mechanism
journal, September 2008


Joint X-ray and neutron refinement with phenix.refine
journal, October 2010

  • Afonine, Pavel V.; Mustyakimov, Marat; Grosse-Kunstleve, Ralf W.
  • Acta Crystallographica Section D Biological Crystallography, Vol. 66, Issue 11
  • DOI: 10.1107/S0907444910026582

An Oxidative Enzyme Boosting the Enzymatic Conversion of Recalcitrant Polysaccharides
journal, October 2010

  • Vaaje-Kolstad, Gustav; Westereng, Bjørge; Horn, Svein J.
  • Science, Vol. 330, Issue 6001, p. 219-222
  • DOI: 10.1126/science.1192231

Neutron protein crystallography: A complementary tool for locating hydrogens in proteins
journal, July 2016

  • O'Dell, William B.; Bodenheimer, Annette M.; Meilleur, Flora
  • Archives of Biochemistry and Biophysics, Vol. 602
  • DOI: 10.1016/j.abb.2015.11.033

Probing Oxygen Activation Sites in Two Flavoprotein Oxidases Using Chloride as an Oxygen Surrogate
journal, June 2011

  • Kommoju, Phaneeswara-Rao; Chen, Zhi-wei; Bruckner, Robert C.
  • Biochemistry, Vol. 50, Issue 24
  • DOI: 10.1021/bi200388g

Oxidative Cleavage of Cellulose by Fungal Copper-Dependent Polysaccharide Monooxygenases
journal, December 2011

  • Beeson, William T.; Phillips, Christopher M.; Cate, Jamie H. D.
  • Journal of the American Chemical Society, Vol. 134, Issue 2
  • DOI: 10.1021/ja210657t

Cellulose Degradation by Polysaccharide Monooxygenases
journal, June 2015


Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes
journal, January 2013

  • Levasseur, Anthony; Drula, Elodie; Lombard, Vincent
  • Biotechnology for Biofuels, Vol. 6, Issue 1, Article No. 41
  • DOI: 10.1186/1754-6834-6-41

Works referencing / citing this record:

Detection and Characterization of a Novel Copper‐Dependent Intermediate in a Lytic Polysaccharide Monooxygenase
journal, November 2019

  • Singh, Raushan K.; Blossom, Benedikt M.; Russo, David A.
  • Chemistry – A European Journal, Vol. 26, Issue 2
  • DOI: 10.1002/chem.201903562

Molecular mechanism of lytic polysaccharide monooxygenases
journal, January 2018

  • Hedegård, Erik Donovan; Ryde, Ulf
  • Chemical Science, Vol. 9, Issue 15
  • DOI: 10.1039/c8sc00426a

Is density functional theory accurate for lytic polysaccharide monooxygenase enzymes?
journal, January 2020

  • Larsson, Ernst D.; Dong, Geng; Veryazov, Valera
  • Dalton Transactions, Vol. 49, Issue 5
  • DOI: 10.1039/c9dt04486h

Iron oxides with a reverse spinel structure: impact of active sites on molecule adsorption
journal, January 2019

  • Jian, Wei; Jia, Ran; Wang, Jian
  • Inorganic Chemistry Frontiers, Vol. 6, Issue 10
  • DOI: 10.1039/c9qi00790c

Molecular mechanism of the chitinolytic peroxygenase reaction
journal, January 2020

  • Bissaro, Bastien; Streit, Bennett; Isaksen, Ingvild
  • Proceedings of the National Academy of Sciences, Vol. 117, Issue 3
  • DOI: 10.1073/pnas.1904889117

Molecular mechanism of the chitinolytic monocopper peroxygenase reaction
journal, February 2019

  • Bissaro, Bastien; Streit, Bennett; Isaksen, Ingvild
  • Proceedings of the National Academy of Sciences
  • DOI: 10.1101/541292

Polysaccharide oxidation by lytic polysaccharide monooxygenase is enhanced by engineered cellobiose dehydrogenase
journal, October 2019

  • Kracher, Daniel; Forsberg, Zarah; Bissaro, Bastien
  • The FEBS Journal, Vol. 287, Issue 5
  • DOI: 10.1111/febs.15067

Neutron Crystallography for the Study of Hydrogen Bonds in Macromolecules
journal, April 2017


Molecular mechanism of lytic polysaccharide monooxygenases
text, January 2018


Targeting the reactive intermediate in polysaccharide monooxygenases
journal, July 2017

  • Hedegård, Erik D.; Ryde, Ulf
  • JBIC Journal of Biological Inorganic Chemistry, Vol. 22, Issue 7
  • DOI: 10.1007/s00775-017-1480-1

Neutron Crystallography for the Study of Hydrogen Bonds in Macromolecules
journal, April 2017