DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Projected sensitivity of the SuperCDMS SNOLAB experiment

Abstract

SuperCDMS SNOLAB will be a next-generation experiment aimed at directly detecting low-mass (< 10 GeV/c$^2$) particles that may constitute dark matter by using cryogenic detectors of two types (HV and iZIP) and two target materials (germanium and silicon). The experiment is being designed with an initial sensitivity to nuclear recoil cross sections ~ 1 x 10$$^{-43}$$ cm$^2$ for a dark matter particle mass of 1 GeV/c$^2$, and with capacity to continue exploration to both smaller masses and better sensitivities. The phonon sensitivity of the HV detectors will be sufficient to detect nuclear recoils from sub-GeV dark matter. A detailed calibration of the detector response to low energy recoils will be needed to optimize running conditions of the HV detectors and to interpret their data for dark matter searches. Low-activity shielding, and the depth of SNOLAB, will reduce most backgrounds, but cosmogenically produced $$^{3}$$H and naturally occurring $$^{32}$$Si will be present in the detectors at some level. Even if these backgrounds are x10 higher than expected, the science reach of the HV detectors would be over three orders of magnitude beyond current results for a dark matter mass of 1 GeV/c$^2$. The iZIP detectors are relatively insensitive to variations in detector response and backgrounds, and will provide better sensitivity for dark matter particle masses (> 5 GeV/c$^2$). The mix of detector types (HV and iZIP), and targets (germanium and silicon), planned for the experiment, as well as flexibility in how the detectors are operated, will allow us to maximize the low-mass reach, and understand the backgrounds that the experiment will encounter. Upgrades to the experiment, perhaps with a variety of ultra-low-background cryogenic detectors, will extend dark matter sensitivity down to the "neutrino floor", where coherent scatters of solar neutrinos become a limiting background.

Authors:
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publication Date:
Research Org.:
Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States); Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Univ. of South Dakota, Vermillion, SD (United States)
Sponsoring Org.:
USDOE Office of Science (SC), High Energy Physics (HEP)
Contributing Org.:
SuperCDMS Collaboration; SuperCDMS
OSTI Identifier:
1389551
Alternate Identifier(s):
OSTI ID: 1350517; OSTI ID: 1350792; OSTI ID: 1458490; OSTI ID: 1598297
Report Number(s):
arXiv:1610.00006; FERMILAB-PUB-16-467-AE; PNNL-SA-128797
Journal ID: ISSN 2470-0010; PRVDAQ
Grant/Contract Number:  
AC02-76SF00515; AC02-07CH11359; AC05-76RL01830; AC02-05CH11231; SC0015657
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review D
Additional Journal Information:
Journal Volume: 95; Journal Issue: 8; Journal ID: ISSN 2470-0010
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
79 ASTRONOMY AND ASTROPHYSICS; 46 INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY; dark matter; particle astrophysics; particle dark matter; weakly interacting massive particles

Citation Formats

Agnese, R., Anderson, A. J., Aramaki, T., Arnquist, I., Baker, W., Barker, D., Basu Thakur, R., Bauer, D. A., Borgland, A., Bowles, M. A., Brink, P. L., Bunker, R., Cabrera, B., Caldwell, D. O., Calkins, R., Cartaro, C., Cerdeño, D. G., Chagani, H., Chen, Y., Cooley, J., Cornell, B., Cushman, P., Daal, M., Di Stefano, P. C. F., Doughty, T., Esteban, L., Fallows, S., Figueroa-Feliciano, E., Fritts, M., Gerbier, G., Ghaith, M., Godfrey, G. L., Golwala, S. R., Hall, J., Harris, H. R., Hofer, T., Holmgren, D., Hong, Z., Hoppe, E., Hsu, L., Huber, M. E., Iyer, V., Jardin, D., Jastram, A., Kelsey, M. H., Kennedy, A., Kubik, A., Kurinsky, N. A., Leder, A., Loer, B., Lopez Asamar, E., Lukens, P., Mahapatra, R., Mandic, V., Mast, N., Mirabolfathi, N., Moffatt, R. A., Morales Mendoza, J. D., Orrell, J. L., Oser, S. M., Page, K., Page, W. A., Partridge, R., Pepin, M., Phipps, A., Poudel, S., Pyle, M., Qiu, H., Rau, W., Redl, P., Reisetter, A., Roberts, A., Robinson, A. E., Rogers, H. E., Saab, T., Sadoulet, B., Sander, J., Schneck, K., Schnee, R. W., Serfass, B., Speller, D., Stein, M., Street, J., Tanaka, H. A., Toback, D., Underwood, R., Villano, A. N., von Krosigk, B., Welliver, B., Wilson, J. S., Wright, D. H., Yellin, S., Yen, J. J., Young, B. A., Zhang, X., and Zhao, X. Projected sensitivity of the SuperCDMS SNOLAB experiment. United States: N. p., 2017. Web. doi:10.1103/PhysRevD.95.082002.
Agnese, R., Anderson, A. J., Aramaki, T., Arnquist, I., Baker, W., Barker, D., Basu Thakur, R., Bauer, D. A., Borgland, A., Bowles, M. A., Brink, P. L., Bunker, R., Cabrera, B., Caldwell, D. O., Calkins, R., Cartaro, C., Cerdeño, D. G., Chagani, H., Chen, Y., Cooley, J., Cornell, B., Cushman, P., Daal, M., Di Stefano, P. C. F., Doughty, T., Esteban, L., Fallows, S., Figueroa-Feliciano, E., Fritts, M., Gerbier, G., Ghaith, M., Godfrey, G. L., Golwala, S. R., Hall, J., Harris, H. R., Hofer, T., Holmgren, D., Hong, Z., Hoppe, E., Hsu, L., Huber, M. E., Iyer, V., Jardin, D., Jastram, A., Kelsey, M. H., Kennedy, A., Kubik, A., Kurinsky, N. A., Leder, A., Loer, B., Lopez Asamar, E., Lukens, P., Mahapatra, R., Mandic, V., Mast, N., Mirabolfathi, N., Moffatt, R. A., Morales Mendoza, J. D., Orrell, J. L., Oser, S. M., Page, K., Page, W. A., Partridge, R., Pepin, M., Phipps, A., Poudel, S., Pyle, M., Qiu, H., Rau, W., Redl, P., Reisetter, A., Roberts, A., Robinson, A. E., Rogers, H. E., Saab, T., Sadoulet, B., Sander, J., Schneck, K., Schnee, R. W., Serfass, B., Speller, D., Stein, M., Street, J., Tanaka, H. A., Toback, D., Underwood, R., Villano, A. N., von Krosigk, B., Welliver, B., Wilson, J. S., Wright, D. H., Yellin, S., Yen, J. J., Young, B. A., Zhang, X., & Zhao, X. Projected sensitivity of the SuperCDMS SNOLAB experiment. United States. https://doi.org/10.1103/PhysRevD.95.082002
Agnese, R., Anderson, A. J., Aramaki, T., Arnquist, I., Baker, W., Barker, D., Basu Thakur, R., Bauer, D. A., Borgland, A., Bowles, M. A., Brink, P. L., Bunker, R., Cabrera, B., Caldwell, D. O., Calkins, R., Cartaro, C., Cerdeño, D. G., Chagani, H., Chen, Y., Cooley, J., Cornell, B., Cushman, P., Daal, M., Di Stefano, P. C. F., Doughty, T., Esteban, L., Fallows, S., Figueroa-Feliciano, E., Fritts, M., Gerbier, G., Ghaith, M., Godfrey, G. L., Golwala, S. R., Hall, J., Harris, H. R., Hofer, T., Holmgren, D., Hong, Z., Hoppe, E., Hsu, L., Huber, M. E., Iyer, V., Jardin, D., Jastram, A., Kelsey, M. H., Kennedy, A., Kubik, A., Kurinsky, N. A., Leder, A., Loer, B., Lopez Asamar, E., Lukens, P., Mahapatra, R., Mandic, V., Mast, N., Mirabolfathi, N., Moffatt, R. A., Morales Mendoza, J. D., Orrell, J. L., Oser, S. M., Page, K., Page, W. A., Partridge, R., Pepin, M., Phipps, A., Poudel, S., Pyle, M., Qiu, H., Rau, W., Redl, P., Reisetter, A., Roberts, A., Robinson, A. E., Rogers, H. E., Saab, T., Sadoulet, B., Sander, J., Schneck, K., Schnee, R. W., Serfass, B., Speller, D., Stein, M., Street, J., Tanaka, H. A., Toback, D., Underwood, R., Villano, A. N., von Krosigk, B., Welliver, B., Wilson, J. S., Wright, D. H., Yellin, S., Yen, J. J., Young, B. A., Zhang, X., and Zhao, X. Fri . "Projected sensitivity of the SuperCDMS SNOLAB experiment". United States. https://doi.org/10.1103/PhysRevD.95.082002. https://www.osti.gov/servlets/purl/1389551.
@article{osti_1389551,
title = {Projected sensitivity of the SuperCDMS SNOLAB experiment},
author = {Agnese, R. and Anderson, A. J. and Aramaki, T. and Arnquist, I. and Baker, W. and Barker, D. and Basu Thakur, R. and Bauer, D. A. and Borgland, A. and Bowles, M. A. and Brink, P. L. and Bunker, R. and Cabrera, B. and Caldwell, D. O. and Calkins, R. and Cartaro, C. and Cerdeño, D. G. and Chagani, H. and Chen, Y. and Cooley, J. and Cornell, B. and Cushman, P. and Daal, M. and Di Stefano, P. C. F. and Doughty, T. and Esteban, L. and Fallows, S. and Figueroa-Feliciano, E. and Fritts, M. and Gerbier, G. and Ghaith, M. and Godfrey, G. L. and Golwala, S. R. and Hall, J. and Harris, H. R. and Hofer, T. and Holmgren, D. and Hong, Z. and Hoppe, E. and Hsu, L. and Huber, M. E. and Iyer, V. and Jardin, D. and Jastram, A. and Kelsey, M. H. and Kennedy, A. and Kubik, A. and Kurinsky, N. A. and Leder, A. and Loer, B. and Lopez Asamar, E. and Lukens, P. and Mahapatra, R. and Mandic, V. and Mast, N. and Mirabolfathi, N. and Moffatt, R. A. and Morales Mendoza, J. D. and Orrell, J. L. and Oser, S. M. and Page, K. and Page, W. A. and Partridge, R. and Pepin, M. and Phipps, A. and Poudel, S. and Pyle, M. and Qiu, H. and Rau, W. and Redl, P. and Reisetter, A. and Roberts, A. and Robinson, A. E. and Rogers, H. E. and Saab, T. and Sadoulet, B. and Sander, J. and Schneck, K. and Schnee, R. W. and Serfass, B. and Speller, D. and Stein, M. and Street, J. and Tanaka, H. A. and Toback, D. and Underwood, R. and Villano, A. N. and von Krosigk, B. and Welliver, B. and Wilson, J. S. and Wright, D. H. and Yellin, S. and Yen, J. J. and Young, B. A. and Zhang, X. and Zhao, X.},
abstractNote = {SuperCDMS SNOLAB will be a next-generation experiment aimed at directly detecting low-mass (< 10 GeV/c$^2$) particles that may constitute dark matter by using cryogenic detectors of two types (HV and iZIP) and two target materials (germanium and silicon). The experiment is being designed with an initial sensitivity to nuclear recoil cross sections ~ 1 x 10$^{-43}$ cm$^2$ for a dark matter particle mass of 1 GeV/c$^2$, and with capacity to continue exploration to both smaller masses and better sensitivities. The phonon sensitivity of the HV detectors will be sufficient to detect nuclear recoils from sub-GeV dark matter. A detailed calibration of the detector response to low energy recoils will be needed to optimize running conditions of the HV detectors and to interpret their data for dark matter searches. Low-activity shielding, and the depth of SNOLAB, will reduce most backgrounds, but cosmogenically produced $^{3}$H and naturally occurring $^{32}$Si will be present in the detectors at some level. Even if these backgrounds are x10 higher than expected, the science reach of the HV detectors would be over three orders of magnitude beyond current results for a dark matter mass of 1 GeV/c$^2$. The iZIP detectors are relatively insensitive to variations in detector response and backgrounds, and will provide better sensitivity for dark matter particle masses (> 5 GeV/c$^2$). The mix of detector types (HV and iZIP), and targets (germanium and silicon), planned for the experiment, as well as flexibility in how the detectors are operated, will allow us to maximize the low-mass reach, and understand the backgrounds that the experiment will encounter. Upgrades to the experiment, perhaps with a variety of ultra-low-background cryogenic detectors, will extend dark matter sensitivity down to the "neutrino floor", where coherent scatters of solar neutrinos become a limiting background.},
doi = {10.1103/PhysRevD.95.082002},
journal = {Physical Review D},
number = 8,
volume = 95,
place = {United States},
year = {Fri Apr 07 00:00:00 EDT 2017},
month = {Fri Apr 07 00:00:00 EDT 2017}
}

Journal Article:

Citation Metrics:
Cited by: 167 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

The Construction and Anticipated Science of SNOLAB
journal, November 2010


Review of mathematics, numerical factors, and corrections for dark matter experiments based on elastic nuclear recoil
journal, December 1996


The SNOLAB deep underground facility
journal, September 2012


Defect production in collision cascades in elemental semiconductors and fcc metals
journal, April 1998


Results from a Search for Light-Mass Dark Matter with a p -Type Point Contact Germanium Detector
journal, March 2011


Results on light dark matter particles with a low-threshold CRESST-II detector
journal, January 2016


Voltage‐assisted calorimetric ionization detector
journal, December 1988

  • Luke, P. N.
  • Journal of Applied Physics, Vol. 64, Issue 12
  • DOI: 10.1063/1.341976

Muon-induced background study for underground laboratories
journal, March 2006


New Solar Opacities, Abundances, Helioseismology, and Neutrino Fluxes
journal, January 2005

  • Bahcall, John N.; Serenelli, Aldo M.; Basu, Sarbani
  • The Astrophysical Journal, Vol. 621, Issue 1
  • DOI: 10.1086/428929

New Results from the Search for Low-Mass Weakly Interacting Massive Particles with the CDMS Low Ionization Threshold Experiment
journal, February 2016


Cosmic-Ray-Produced Silicon-32 in Nature
journal, February 1960


Cosmogenic radionuclides in metals as indicator for sea level exposure history
journal, May 2009


Finding an upper limit in the presence of an unknown background
journal, August 2002


Low-Mass WIMP Sensitivity and Statistical Discrimination of Electron and Nuclear Recoils by Varying Luke-Neganov Phonon Gain in Semiconductor Detectors
journal, February 2012


Measurements of extremely low radioactivity levels in BOREXINO
journal, August 2002


Improved Limits on Scattering of Weakly Interacting Massive Particles from Reanalysis of 2013 LUX Data
journal, April 2016


A database for storing the results of material radiopurity measurements
journal, December 2016

  • Loach, J. C.; Cooley, J.; Cox, G. A.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 839
  • DOI: 10.1016/j.nima.2016.09.036

Asymmetric dark matter
journal, June 2009


Measurements of ionization produced in silicon crystals by low-energy silicon atoms
journal, February 1992


Neutrino coherent scattering rates at direct dark matter detectors
journal, October 2009


Measurement of the ionization produced by sub-keV silicon nuclear recoils in a CCD dark matter detector
journal, October 2016


Geant4 developments and applications
journal, February 2006

  • Allison, J.; Amako, K.; Apostolakis, J.
  • IEEE Transactions on Nuclear Science, Vol. 53, Issue 1
  • DOI: 10.1109/TNS.2006.869826

Theoretical and experimental investigation of cosmogenic radioisotope production in germanium
journal, July 1992

  • Avignone, F. T.; Brodzinski, R. L.; Collar, J. I.
  • Nuclear Physics B - Proceedings Supplements, Vol. 28, Issue 1
  • DOI: 10.1016/0920-5632(92)90184-T

Material screening and selection for XENON100
journal, September 2011


Search for Low-Mass Weakly Interacting Massive Particles with SuperCDMS
journal, June 2014


Measurement of the ionization of slow silicon nuclei in silicon for the calibration of a silicon dark-matter detector
journal, November 1990


Geant4—a simulation toolkit
journal, July 2003

  • Agostinelli, S.; Allison, J.; Amako, K.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 506, Issue 3
  • DOI: 10.1016/S0168-9002(03)01368-8

The Weak Neutral Current and its Effects in Stellar Collapse
journal, December 1977


Ionization efficiency study for low energy nuclear recoils in germanium
journal, August 2013


Ionization Produced by Energetic Silicon Atoms within a Silicon Lattice
journal, June 1965


Silicon for ultra-low-level detectors and 32Si
journal, November 1991

  • Plaga, R.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 309, Issue 3
  • DOI: 10.1016/0168-9002(91)90270-Z

Demonstration of surface electron rejection with interleaved germanium detectors for dark matter searches
journal, October 2013

  • Agnese, R.; Anderson, A. J.; Balakishiyeva, D.
  • Applied Physics Letters, Vol. 103, Issue 16
  • DOI: 10.1063/1.4826093

Complementarity of dark matter detectors in light of the neutrino background
journal, October 2014


Measurement of the low-energy quenching factor in germanium using an Y 88 / Be photoneutron source
journal, December 2016


Cosmogenic activation in germanium and copper for rare event searches
journal, June 2010


Nuclear Data Sheets for A = 32
journal, September 2011


Energy lost to ionization by 254-eV Ge 73 atoms stopping in Ge
journal, April 1975


Results from a Search for Light-Mass Dark Matter with a p -Type Point Contact Germanium Detector
text, January 2011

  • O., Tench,; D., Reyna,; P., De Lurgio,
  • The University of North Carolina at Chapel Hill University Libraries
  • DOI: 10.17615/vjkj-yh62

Measurement of radioactive contamination in the high-resistivity silicon CCDs of the DAMIC experiment
text, January 2015

  • Collaboration, Damic; Al, Et; Aguilar-Arevalo, A.
  • IOP Publishing
  • DOI: 10.5167/uzh-129913

Material screening and selection for XENON100
text, January 2011


Results from a Search for Light-Mass Dark Matter with a P-type Point Contact Germanium Detector
text, January 2010


Material screening and selection for XENON100
text, January 2011


Ionization Efficiency Study for Low Energy Nuclear Recoils in Germanium
text, January 2013


Complementarity of dark matter detectors in light of the neutrino background
text, January 2014


Works referencing / citing this record:

MeV dark matter: model independent bounds
journal, September 2017

  • Bertuzzo, Enrico; Caniu Barros, Cristian J.; Grilli di Cortona, Giovanni
  • Journal of High Energy Physics, Vol. 2017, Issue 9
  • DOI: 10.1007/jhep09(2017)116

CUTE: A Low Background Facility for Testing Cryogenic Dark Matter Detectors
journal, July 2018

  • Camus, Ph.; Cazes, A.; Dastgheibi-Fard, A.
  • Journal of Low Temperature Physics, Vol. 193, Issue 5-6
  • DOI: 10.1007/s10909-018-2014-0

Optimizing Thermal Detectors for Low-Threshold Applications in Neutrino and Dark Matter Experiments
journal, October 2018

  • Bastidon, N.; Billard, J.; Figueroa-Feliciano, E.
  • Journal of Low Temperature Physics, Vol. 193, Issue 5-6
  • DOI: 10.1007/s10909-018-2073-2

Study on Phonon Amplification of Neganov–Luke Light Detectors
journal, November 2019


Energy loss due to defect formation from 206 Pb recoils in SuperCDMS germanium detectors
journal, August 2018

  • Agnese, R.; Aralis, T.; Aramaki, T.
  • Applied Physics Letters, Vol. 113, Issue 9
  • DOI: 10.1063/1.5041457

Direct detection of WIMP dark matter: concepts and status
journal, August 2019


Physics beyond colliders at CERN: beyond the Standard Model working group report
journal, December 2019

  • Beacham, J.; Burrage, C.; Curtin, D.
  • Journal of Physics G: Nuclear and Particle Physics, Vol. 47, Issue 1
  • DOI: 10.1088/1361-6471/ab4cd2

On the direct detection of multi-component dark matter: sensitivity studies and parameter estimation
journal, November 2017

  • Herrero-Garcia, Juan; Scaffidi, Andre; White, Martin
  • Journal of Cosmology and Astroparticle Physics, Vol. 2017, Issue 11
  • DOI: 10.1088/1475-7516/2017/11/021

CNO neutrino Grand Prix: the race to solve the solar metallicity problem
journal, April 2018

  • Cerdeño, David G.; Davis, Jonathan H.; Fairbairn, Malcolm
  • Journal of Cosmology and Astroparticle Physics, Vol. 2018, Issue 04
  • DOI: 10.1088/1475-7516/2018/04/037

Casting a wide signal net with future direct dark matter detection experiments
journal, July 2018

  • Gelmini, Graciela B.; Takhistov, Volodymyr; Witte, Samuel J.
  • Journal of Cosmology and Astroparticle Physics, Vol. 2018, Issue 07
  • DOI: 10.1088/1475-7516/2018/07/009

How high is the neutrino floor?
journal, January 2019

  • Bœhm, C.; Cerdeño, D. G.; Machado, P. A. N.
  • Journal of Cosmology and Astroparticle Physics, Vol. 2019, Issue 01
  • DOI: 10.1088/1475-7516/2019/01/043

Z ′ mediated WIMPs: dead, dying, or soon to be detected?
journal, November 2019

  • Blanco, Carlos; Escudero, Miguel; Hooper, Dan
  • Journal of Cosmology and Astroparticle Physics, Vol. 2019, Issue 11
  • DOI: 10.1088/1475-7516/2019/11/024

Presupernova neutrinos in large dark matter direct detection experiments
journal, February 2020


Invisible decay of the Higgs boson in the context of a thermal and nonthermal relic in MSSM
journal, May 2017

  • Barman, Rahool Kumar; Bélanger, Genevieve; Bhattacherjee, Biplob
  • Physical Review D, Vol. 95, Issue 9
  • DOI: 10.1103/physrevd.95.095018

New constraints and discovery potential of sub-GeV dark matter with xenon detectors
journal, August 2017


Light dark matter: Models and constraints
journal, December 2017


Optimizing EDELWEISS detectors for low-mass WIMP searches
journal, January 2018


Solar neutrinos as a signal and background in direct-detection experiments searching for sub-GeV dark matter with electron recoils
journal, May 2018


Light dark matter in a gauged U ( 1 ) L μ − L τ model
journal, February 2019


Geoneutrinos in large direct detection experiments
journal, May 2019

  • Gelmini, Graciela B.; Takhistov, Volodymyr; Witte, Samuel J.
  • Physical Review D, Vol. 99, Issue 9
  • DOI: 10.1103/physrevd.99.093009

Directly Detecting MeV-Scale Dark Matter Via Solar Reflection
journal, April 2018


Directly Detecting Sub-GeV Dark Matter with Electrons from Nuclear Scattering
text, January 2018


Exploring Light Mediators with Low-Threshold Direct Detection Experiments
text, January 2017

  • Kahlhoefer, Felix; Kulkarni, Suchita; Wild, Sebastian
  • Deutsches Elektronen-Synchrotron, DESY, Hamburg
  • DOI: 10.3204/pubdb-2017-12773

Exploring light mediators with low-threshold direct detection experiments
journal, November 2017

  • Kahlhoefer, Felix; Kulkarni, Suchita; Wild, Sebastian
  • Journal of Cosmology and Astroparticle Physics, Vol. 2017, Issue 11
  • DOI: 10.1088/1475-7516/2017/11/016

Physics beyond colliders at CERN: beyond the Standard Model working group report
text, January 2020


Cosmogenic activation of materials
conference, January 2005

  • Amaré, J.
  • TOPICAL WORKSHOP ON LOW RADIOACTIVITY TECHNIQUES: LRT 2004, AIP Conference Proceedings
  • DOI: 10.1063/1.2060480

Physics Beyond Colliders at CERN: Beyond the Standard Model Working Group Report
text, January 2019


Exploring light mediators with low-threshold direct detection experiments
text, January 2017

  • Kahlhoefer, Felix; Kulkarni, Suchita; Wild, Sebastian
  • Deutsches Elektronen-Synchrotron, DESY, Hamburg
  • DOI: 10.3204/pubdb-2017-10326

Cosmogenic activation of materials
conference, January 2013

  • Cebrián, S.
  • LOW RADIOACTIVITY TECHNIQUES 2013 (LRT 2013): Proceedings of the IV International Workshop in Low Radioactivity Techniques, AIP Conference Proceedings
  • DOI: 10.1063/1.4818094

Examining the origin of dark matter mass at colliders
text, January 2016


Magnetic Bubble Chambers and Sub-GeV Dark Matter Direct Detection
text, January 2017


Directly Detecting MeV-scale Dark Matter via Solar Reflection
text, January 2017


Thermal Dark Matter Through the Dirac Neutrino Portal
text, January 2017


Light Dark Matter: Models and Constraints
text, January 2017


Casting a Wide Signal Net with Future Direct Dark Matter Detection Experiments
text, January 2018


First Dark Matter Constraints from a SuperCDMS Single-Charge Sensitive Detector
text, January 2018


Energy Loss Due to Defect Formation from $^{206}$Pb Recoils in SuperCDMS Germanium Detectors
text, January 2018


Directional Detection of Light Dark Matter with Polar Materials
text, January 2018


How high is the neutrino floor?
text, January 2018


Diamond Detectors for Direct Detection of Sub-GeV Dark Matter
text, January 2019


$Z'$ Mediated WIMPs: Dead, Dying, or Soon to be Detected?
text, January 2019