DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Evolution at the Solid Electrolyte/Gold Electrode Interface during Lithium Deposition and Stripping

Abstract

Quasi-binary thiophosphate-based solid electrolytes (SEs) are attracting substantial interest for lithium batteries due to their outstanding room temperature ionic conductivities. This work describes reactions occurring at the solid electrolyte (SE)/Au interface during Li deposition and stripping for two exemplary SE materials: β-Li3PS4 (β-LPS) and Li10GeP2S12 (LGPS). We used in situ Raman spectroscopy, along with X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) to evaluate potential-dependent changes in the chemistry of these materials at active electrode interfaces. For β-LPS, a partially reversible conversion of PS43– to P2S64– was found along with the formation of Li2S during Li deposition and stripping. In contrast, LGPS exhibited only irreversible changes at potentials below 0.7 V vs Li+/Li. The different behaviors likely relate to differences in the structures of the two SE materials and the availability of easily bridged anion components in close proximity. In conclusion, the work shows that SE integrity at interfaces can be altered by applied potential and illustrates important speciations for the interfacial structures that mediate their electrochemical activities.

Authors:
 [1]; ORCiD logo [1]; ORCiD logo [1];  [1]
  1. Univ. of Illinois at Urbana−Champaign, Urbana, IL (United States)
Publication Date:
Research Org.:
Energy Frontier Research Centers (EFRC) (United States). Center for Electrical Energy Storage (CEES)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1388302
Grant/Contract Number:  
AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
Chemistry of Materials
Additional Journal Information:
Journal Volume: 29; Journal Issue: 7; Related Information: CEES partners with Argonne National Laboratory (lead); University of Illinois, Urbana-Champaign; Northwest University; Journal ID: ISSN 0897-4756
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; energy storage (including batteries and capacitors); charge transport; materials and chemistry by design; synthesis (novel materials)

Citation Formats

Sang, Lingzi, Haasch, Richard T., Gewirth, Andrew A., and Nuzzo, Ralph G. Evolution at the Solid Electrolyte/Gold Electrode Interface during Lithium Deposition and Stripping. United States: N. p., 2017. Web. doi:10.1021/acs.chemmater.7b00034.
Sang, Lingzi, Haasch, Richard T., Gewirth, Andrew A., & Nuzzo, Ralph G. Evolution at the Solid Electrolyte/Gold Electrode Interface during Lithium Deposition and Stripping. United States. https://doi.org/10.1021/acs.chemmater.7b00034
Sang, Lingzi, Haasch, Richard T., Gewirth, Andrew A., and Nuzzo, Ralph G. Tue . "Evolution at the Solid Electrolyte/Gold Electrode Interface during Lithium Deposition and Stripping". United States. https://doi.org/10.1021/acs.chemmater.7b00034. https://www.osti.gov/servlets/purl/1388302.
@article{osti_1388302,
title = {Evolution at the Solid Electrolyte/Gold Electrode Interface during Lithium Deposition and Stripping},
author = {Sang, Lingzi and Haasch, Richard T. and Gewirth, Andrew A. and Nuzzo, Ralph G.},
abstractNote = {Quasi-binary thiophosphate-based solid electrolytes (SEs) are attracting substantial interest for lithium batteries due to their outstanding room temperature ionic conductivities. This work describes reactions occurring at the solid electrolyte (SE)/Au interface during Li deposition and stripping for two exemplary SE materials: β-Li3PS4 (β-LPS) and Li10GeP2S12 (LGPS). We used in situ Raman spectroscopy, along with X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) to evaluate potential-dependent changes in the chemistry of these materials at active electrode interfaces. For β-LPS, a partially reversible conversion of PS43– to P2S64– was found along with the formation of Li2S during Li deposition and stripping. In contrast, LGPS exhibited only irreversible changes at potentials below 0.7 V vs Li+/Li. The different behaviors likely relate to differences in the structures of the two SE materials and the availability of easily bridged anion components in close proximity. In conclusion, the work shows that SE integrity at interfaces can be altered by applied potential and illustrates important speciations for the interfacial structures that mediate their electrochemical activities.},
doi = {10.1021/acs.chemmater.7b00034},
journal = {Chemistry of Materials},
number = 7,
volume = 29,
place = {United States},
year = {Tue Mar 14 00:00:00 EDT 2017},
month = {Tue Mar 14 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 103 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

A lithium superionic conductor
journal, July 2011

  • Kamaya, Noriaki; Homma, Kenji; Yamakawa, Yuichiro
  • Nature Materials, Vol. 10, Issue 9, p. 682-686
  • DOI: 10.1038/nmat3066

A Battery Made from a Single Material
journal, April 2015


Preparation of lithium ion conducting glasses and glass–ceramics for all-solid-state batteries
journal, February 2008


Crystallization Process for Superionic Li7P3S11 Glass-Ceramic Electrolytes: Superionic Li7P3S11 Glass-Ceramic Electrolytes
journal, March 2011


New, Highly Ion-Conductive Crystals Precipitated from Li2S-P2S5 Glasses
journal, April 2005

  • Mizuno, F.; Hayashi, A.; Tadanaga, K.
  • Advanced Materials, Vol. 17, Issue 7, p. 918-921
  • DOI: 10.1002/adma.200401286

Analysis of the structure and degree of crystallisation of 70Li 2 S–30P 2 S 5 glass ceramic
journal, January 2015

  • Seino, Yoshikatsu; Nakagawa, Masaru; Senga, Minoru
  • Journal of Materials Chemistry A, Vol. 3, Issue 6
  • DOI: 10.1039/C4TA04332D

A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries
journal, January 2014

  • Seino, Yoshikatsu; Ota, Tsuyoshi; Takada, Kazunori
  • Energy Environ. Sci., Vol. 7, Issue 2
  • DOI: 10.1039/C3EE41655K

Air-stable, high-conduction solid electrolytes of arsenic-substituted Li 4 SnS 4
journal, January 2014

  • Sahu, Gayatri; Lin, Zhan; Li, Juchuan
  • Energy Environ. Sci., Vol. 7, Issue 3
  • DOI: 10.1039/C3EE43357A

Polycarbonate-based solid polymer electrolytes for Li-ion batteries
journal, September 2014


Formation of Li 2 S–P 2 S 5 Solid Electrolyte from N -Methylformamide Solution
journal, November 2013

  • Teragawa, Shingo; Aso, Keigo; Tadanaga, Kiyoharu
  • Chemistry Letters, Vol. 42, Issue 11
  • DOI: 10.1246/cl.130726

Preparation of Li2S–P2S5 solid electrolyte from N-methylformamide solution and application for all-solid-state lithium battery
journal, February 2014


A synthesis of crystalline Li7P3S11 solid electrolyte from 1,2-dimethoxyethane solvent
journal, December 2014


Preparation of high lithium-ion conducting Li6PS5Cl solid electrolyte from ethanol solution for all-solid-state lithium batteries
journal, October 2015


Liquid-phase synthesis of a Li3PS4 solid electrolyte using N-methylformamide for all-solid-state lithium batteries
journal, January 2014

  • Teragawa, Shingo; Aso, Keigo; Tadanaga, Kiyoharu
  • Journal of Materials Chemistry A, Vol. 2, Issue 14
  • DOI: 10.1039/c3ta15090a

Atomic Layer Deposition of the Solid Electrolyte LiPON
journal, July 2015


High-power all-solid-state batteries using sulfide superionic conductors
journal, March 2016


Anomalous High Ionic Conductivity of Nanoporous β-Li3PS4
journal, January 2013

  • Liu, Zengcai; Fu, Wujun; Payzant, E. Andrew
  • Journal of the American Chemical Society, Vol. 135, Issue 3, p. 975-978
  • DOI: 10.1021/ja3110895

Invited paper: Recent development of bulk-type solid-state rechargeable lithium batteries with sulfide glass-ceramic electrolytes
journal, April 2012


Progress and prospective of solid-state lithium batteries
journal, February 2013


In-Channel and In-Plane Li Ion Diffusions in the Superionic Conductor Li 10 GeP 2 S 12 Probed by Solid-State NMR
journal, August 2015


Structural Insights and 3D Diffusion Pathways within the Lithium Superionic Conductor Li 10 GeP 2 S 12
journal, August 2016


First Principles Study of the Li10GeP2S12 Lithium Super Ionic Conductor Material
journal, December 2011

  • Mo, Yifei; Ong, Shyue Ping; Ceder, Gerbrand
  • Chemistry of Materials, Vol. 24, Issue 1, p. 15-17
  • DOI: 10.1021/cm203303y

Structures, Thermodynamics, and Li + Mobility of Li 10 GeP 2 S 12 : A First-Principles Analysis
journal, May 2014

  • Du, Fuming; Ren, Xiaodong; Yang, Jiong
  • The Journal of Physical Chemistry C, Vol. 118, Issue 20
  • DOI: 10.1021/jp5000039

Single-crystal X-ray structure analysis of the superionic conductor Li10GeP2S12
journal, January 2013

  • Kuhn, Alexander; Köhler, Jürgen; Lotsch, Bettina V.
  • Physical Chemistry Chemical Physics, Vol. 15, Issue 28
  • DOI: 10.1039/c3cp51985f

Structural Evolution and Li Dynamics in Nanophase Li 3 PS 4 by Solid-State and Pulsed-Field Gradient NMR
journal, May 2014

  • Gobet, Mallory; Greenbaum, Steve; Sahu, Gayatri
  • Chemistry of Materials, Vol. 26, Issue 11
  • DOI: 10.1021/cm5012058

Fabrication of ultrathin solid electrolyte membranes of β-Li 3 PS 4 nanoflakes by evaporation-induced self-assembly for all-solid-state batteries
journal, January 2016

  • Wang, Hui; Hood, Zachary D.; Xia, Younan
  • Journal of Materials Chemistry A, Vol. 4, Issue 21
  • DOI: 10.1039/C6TA02294D

Crystal structure and phase transitions of the lithium ionic conductor Li3PS4
journal, February 2011


Enhancement of the High-Rate Capability of Solid-State Lithium Batteries by Nanoscale Interfacial Modification
journal, September 2006

  • Ohta, N.; Takada, K.; Zhang, L.
  • Advanced Materials, Vol. 18, Issue 17, p. 2226-2229
  • DOI: 10.1002/adma.200502604

Interfacial modification for high-power solid-state lithium batteries
journal, September 2008


Interface Stability in Solid-State Batteries
journal, December 2015


First principles study on electrochemical and chemical stability of solid electrolyte–electrode interfaces in all-solid-state Li-ion batteries
journal, January 2016

  • Zhu, Yizhou; He, Xingfeng; Mo, Yifei
  • Journal of Materials Chemistry A, Vol. 4, Issue 9
  • DOI: 10.1039/C5TA08574H

Origin of Outstanding Stability in the Lithium Solid Electrolyte Materials: Insights from Thermodynamic Analyses Based on First-Principles Calculations
journal, October 2015

  • Zhu, Yizhou; He, Xingfeng; Mo, Yifei
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 42
  • DOI: 10.1021/acsami.5b07517

Structural requirements for fast lithium ion migration in Li10GeP2S12
journal, January 2012

  • Adams, Stefan; Prasada Rao, R.
  • Journal of Materials Chemistry, Vol. 22, Issue 16
  • DOI: 10.1039/c2jm16688g

Raman imaging for LiCoO2 composite positive electrodes in all-solid-state lithium batteries using Li2S–P2S5 solid electrolytes
journal, January 2016


Direct Observation of the Interfacial Instability of the Fast Ionic Conductor Li 10 GeP 2 S 12 at the Lithium Metal Anode
journal, March 2016


Interphase formation and degradation of charge transfer kinetics between a lithium metal anode and highly crystalline Li7P3S11 solid electrolyte
journal, March 2016


In Situ Raman Spectroscopy of Sulfur Speciation in Lithium–Sulfur Batteries
journal, January 2015

  • Wu, Heng-Liang; Huff, Laura A.; Gewirth, Andrew A.
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 3
  • DOI: 10.1021/am5072942

Investigation of the Electrochemical Windows of Aprotic Alkali Metal (Li, Na, K) Salt Solutions
journal, January 2001

  • Moshkovich, M.; Gofer, Y.; Aurbach, D.
  • Journal of The Electrochemical Society, Vol. 148, Issue 4
  • DOI: 10.1149/1.1357316

Effect of Mn and Cu Addition on Lithiation and SEI Formation on Model Anode Electrodes
journal, January 2014

  • Esbenshade, Jennifer L.; Gewirth, Andrew A.
  • Journal of The Electrochemical Society, Vol. 161, Issue 4
  • DOI: 10.1149/2.009404jes

Ionic conductivity of and phase transition in lithium thiophosphate Li3PS4
journal, November 1984


Darstellung, Schwingungsspektrum und Normalkoordinatenanalyse des Gold-ortho-Thiophosphates, AuPS4
journal, June 1986

  • Pätzmann, U.; Brockner, W.; Cyvin, B. N.
  • Journal of Raman Spectroscopy, Vol. 17, Issue 3
  • DOI: 10.1002/jrs.1250170305

Lithium ion conducting solid electrolytes prepared from Li2S, elemental P and S
journal, October 2006


A structural, spectroscopic and electrochemical study of a lithium ion conducting Li10GeP2S12 solid electrolyte
journal, May 2013


(PPh3-C3H6-PPh3)0.5[NiPS4] and (PPh3-C2H2-PPh3)0.5[NiPS4]: Two new compounds containing [NiPS4]? chains
journal, January 2003

  • Coste, Servane; Bujoli-Doeuff, Martine; Louarn, Guy
  • New Journal of Chemistry, Vol. 27, Issue 8
  • DOI: 10.1039/b301148h

Nature and Strength of M−S Bonds (M = Au, Ag, and Cu) in Binary Alloy Gold Clusters
journal, September 2010

  • Pakiari, A. H.; Jamshidi, Z.
  • The Journal of Physical Chemistry A, Vol. 114, Issue 34
  • DOI: 10.1021/jp100423b

Local Structural Investigations, Defect Formation, and Ionic Conductivity of the Lithium Ionic Conductor Li 4 P 2 S 6
journal, November 2016


Raman Spectroscopy Study of the Reaction between Sodium Sulfide or Disulfide and Sulfur: Identity of the Species Formed in Solid and Liquid Phases
journal, May 1999

  • El Jaroudi, Omar; Picquenard, Eric; Gobeltz, Noelle
  • Inorganic Chemistry, Vol. 38, Issue 12
  • DOI: 10.1021/ic9900096

Study of the optic modes of Ge 0.30 S 0.70 glass by infrared and Raman spectroscopy
journal, February 1974

  • Lucovsky, G.; deNeufville, J. P.; Galeener, F. L.
  • Physical Review B, Vol. 9, Issue 4
  • DOI: 10.1103/PhysRevB.9.1591

Structural Properties of Lithium Thio-Germanate Thin Film Electrolytes Grown by Radio Frequency Sputtering
journal, March 2011

  • Seo, Inseok; Martin, Steve W.
  • Inorganic Chemistry, Vol. 50, Issue 6
  • DOI: 10.1021/ic101448m

Preparation and characterization of lithium ion conducting Li2S–P2S5–GeS2 glasses and glass-ceramics
journal, October 2010


Works referencing / citing this record:

Recent Progress in All-Solid-State Lithium−Sulfur Batteries Using High Li-Ion Conductive Solid Electrolytes
journal, February 2019


Neutron reflectometry to measure in situ the rate determining step of lithium ion transport through thin silicon layers and interfaces
journal, January 2019

  • Hüger, Erwin; Stahn, Jochen; Heitjans, Paul
  • Physical Chemistry Chemical Physics, Vol. 21, Issue 30
  • DOI: 10.1039/c9cp01222b

Kinetics‐Controlled Degradation Reactions at Crystalline LiPON/Li x CoO 2 and Crystalline LiPON/Li‐Metal Interfaces
journal, March 2018

  • Leung, Kevin; Pearse, Alexander J.; Talin, A. Alec
  • ChemSusChem, Vol. 11, Issue 12
  • DOI: 10.1002/cssc.201800027

Understanding interface stability in solid-state batteries
journal, December 2019


Sulfide‐Based Solid‐State Electrolytes: Synthesis, Stability, and Potential for All‐Solid‐State Batteries
journal, August 2019


Sulfide Solid Electrolytes for Lithium Battery Applications
journal, August 2018

  • Lau, Jonathan; DeBlock, Ryan H.; Butts, Danielle M.
  • Advanced Energy Materials, Vol. 8, Issue 27
  • DOI: 10.1002/aenm.201800933

Building Better Batteries in the Solid State: A Review
journal, November 2019

  • Mauger, Alain; Julien, Christian M.; Paolella, Andrea
  • Materials, Vol. 12, Issue 23, p. 3892
  • DOI: 10.3390/ma12233892

Unraveling the Intra and Intercycle Interfacial Evolution of Li 6 PS 5 Cl‐Based All‐Solid‐State Lithium Batteries
journal, December 2019


Design Strategies, Practical Considerations, and New Solution Processes of Sulfide Solid Electrolytes for All-Solid-State Batteries
journal, April 2018

  • Park, Kern Ho; Bai, Qiang; Kim, Dong Hyeon
  • Advanced Energy Materials, Vol. 8, Issue 18
  • DOI: 10.1002/aenm.201800035

Fundamentals of inorganic solid-state electrolytes for batteries
journal, August 2019

  • Famprikis, Theodosios; Canepa, Pieremanuele; Dawson, James A.
  • Nature Materials, Vol. 18, Issue 12
  • DOI: 10.1038/s41563-019-0431-3

Influence of electronically conductive additives on the cycling performance of argyrodite-based all-solid-state batteries
journal, January 2020

  • Strauss, Florian; Stepien, Dominik; Maibach, Julia
  • RSC Advances, Vol. 10, Issue 2
  • DOI: 10.1039/c9ra10253a

Building Better Batteries in the Solid State: A Review
journal, November 2019

  • Mauger, Alain; Julien, Christian M.; Paolella, Andrea
  • Materials, Vol. 12, Issue 23, p. 3892
  • DOI: 10.3390/ma12233892