DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Modulating nanoparticle superlattice structure using proteins with tunable bond distributions

Abstract

Here, we investigate the use of proteins with tunable DNA modification distributions to modulate nanoparticle superlattice structure. Using Beta-galactosidase (βgal) as a model system, we have employed the orthogonal chemical reactivities of surface amines and thiols to synthesize protein-DNA conjugates with 36 evenly distributed or 8 specifically positioned oligonucleotides. When assembled into crystalline superlattices with AuNPs, we find that the distribution of DNA modifications modulates the favored structure: βgal with uniformly distributed DNA bonding elements results in body-centered cubic crystals, whereas DNA functionalization of cysteines results in AB2 packing. We probe the role of protein oligonucleotide number and conjugate size on this observation, which revealed the importance of oligonucleotide distribution and number in this observed assembly behavior. These results indicate that proteins with defined DNA-modification patterns are powerful tools to control the nanoparticle superlattices architecture, and establish the importance of oligonucleotide distribution in the assembly behavior of protein-DNA conjugates.

Authors:
 [1];  [1];  [1]; ORCiD logo [2];  [1]; ORCiD logo [1]
  1. Northwestern Univ., Evanston, IL (United States)
  2. Argonne National Lab. (ANL), Argonne, IL (United States)
Publication Date:
Research Org.:
Argonne National Laboratory (ANL), Argonne, IL (United States)
Sponsoring Org.:
U.S. Department of Defense (DOD); Air Force Research Laboratory (AFRL), Air Force Office of Scientific Research (AFOSR); USDOE Office of Science (SC); W.M. Keck Foundation; National Science Foundation (NSF)
OSTI Identifier:
1371916
Grant/Contract Number:  
AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
Journal of the American Chemical Society
Additional Journal Information:
Journal Volume: 139; Journal Issue: 5; Journal ID: ISSN 0002-7863
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; 60 APPLIED LIFE SCIENCES

Citation Formats

McMillan, Janet R., Brodin, Jeffrey D., Millan, Jaime A., Lee, Byeongdu, Olvera de la Cruz, Monica, and Mirkin, Chad A. Modulating nanoparticle superlattice structure using proteins with tunable bond distributions. United States: N. p., 2017. Web. doi:10.1021/jacs.6b11893.
McMillan, Janet R., Brodin, Jeffrey D., Millan, Jaime A., Lee, Byeongdu, Olvera de la Cruz, Monica, & Mirkin, Chad A. Modulating nanoparticle superlattice structure using proteins with tunable bond distributions. United States. https://doi.org/10.1021/jacs.6b11893
McMillan, Janet R., Brodin, Jeffrey D., Millan, Jaime A., Lee, Byeongdu, Olvera de la Cruz, Monica, and Mirkin, Chad A. Wed . "Modulating nanoparticle superlattice structure using proteins with tunable bond distributions". United States. https://doi.org/10.1021/jacs.6b11893. https://www.osti.gov/servlets/purl/1371916.
@article{osti_1371916,
title = {Modulating nanoparticle superlattice structure using proteins with tunable bond distributions},
author = {McMillan, Janet R. and Brodin, Jeffrey D. and Millan, Jaime A. and Lee, Byeongdu and Olvera de la Cruz, Monica and Mirkin, Chad A.},
abstractNote = {Here, we investigate the use of proteins with tunable DNA modification distributions to modulate nanoparticle superlattice structure. Using Beta-galactosidase (βgal) as a model system, we have employed the orthogonal chemical reactivities of surface amines and thiols to synthesize protein-DNA conjugates with 36 evenly distributed or 8 specifically positioned oligonucleotides. When assembled into crystalline superlattices with AuNPs, we find that the distribution of DNA modifications modulates the favored structure: βgal with uniformly distributed DNA bonding elements results in body-centered cubic crystals, whereas DNA functionalization of cysteines results in AB2 packing. We probe the role of protein oligonucleotide number and conjugate size on this observation, which revealed the importance of oligonucleotide distribution and number in this observed assembly behavior. These results indicate that proteins with defined DNA-modification patterns are powerful tools to control the nanoparticle superlattices architecture, and establish the importance of oligonucleotide distribution in the assembly behavior of protein-DNA conjugates.},
doi = {10.1021/jacs.6b11893},
journal = {Journal of the American Chemical Society},
number = 5,
volume = 139,
place = {United States},
year = {Wed Jan 25 00:00:00 EST 2017},
month = {Wed Jan 25 00:00:00 EST 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 46 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

A DNA-based method for rationally assembling nanoparticles into macroscopic materials
journal, August 1996

  • Mirkin, Chad A.; Letsinger, Robert L.; Mucic, Robert C.
  • Nature, Vol. 382, Issue 6592, p. 607-609
  • DOI: 10.1038/382607a0

DNA in a material world
journal, January 2003


Folding DNA to create nanoscale shapes and patterns
journal, March 2006


Programmable materials and the nature of the DNA bond
journal, February 2015


DNA-guided crystallization of colloidal nanoparticles
journal, January 2008

  • Nykypanchuk, Dmytro; Maye, Mathew M.; van der Lelie, Daniel
  • Nature, Vol. 451, Issue 7178, p. 549-552
  • DOI: 10.1038/nature06560

DNA-programmable nanoparticle crystallization
journal, January 2008

  • Park, Sung Yong; Lytton-Jean, Abigail K. R.; Lee, Byeongdu
  • Nature, Vol. 451, Issue 7178, p. 553-556
  • DOI: 10.1038/nature06508

Nanoparticle Superlattice Engineering with DNA
journal, October 2011


Dynamic Tuning of DNA-Nanoparticle Superlattices by Molecular Intercalation of Double Helix
journal, March 2015

  • Pal, Suchetan; Zhang, Yugang; Kumar, Sanat K.
  • Journal of the American Chemical Society, Vol. 137, Issue 12
  • DOI: 10.1021/ja512799d

The Significance of Multivalent Bonding Motifs and “Bond Order” in DNA-Directed Nanoparticle Crystallization
journal, May 2016

  • Thaner, Ryan V.; Eryazici, Ibrahim; Macfarlane, Robert J.
  • Journal of the American Chemical Society, Vol. 138, Issue 19
  • DOI: 10.1021/jacs.6b02479

A general approach to DNA-programmable atom equivalents
journal, May 2013

  • Zhang, Chuan; Macfarlane, Robert J.; Young, Kaylie L.
  • Nature Materials, Vol. 12, Issue 8
  • DOI: 10.1038/nmat3647

DNA-mediated engineering of multicomponent enzyme crystals
journal, March 2015

  • Brodin, Jeffrey D.; Auyeung, Evelyn; Mirkin, Chad A.
  • Proceedings of the National Academy of Sciences, Vol. 112, Issue 15
  • DOI: 10.1073/pnas.1503533112

DNA-nanoparticle superlattices formed from anisotropic building blocks
journal, October 2010

  • Jones, Matthew R.; Macfarlane, Robert J.; Lee, Byeongdu
  • Nature Materials, Vol. 9, Issue 11, p. 913-917
  • DOI: 10.1038/nmat2870

Superlattices assembled through shape-induced directional binding
journal, April 2015

  • Lu, Fang; Yager, Kevin G.; Zhang, Yugang
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms7912

Modular and Chemically Responsive Oligonucleotide “Bonds” in Nanoparticle Superlattices
journal, October 2015

  • Barnaby, Stacey N.; Thaner, Ryan V.; Ross, Michael B.
  • Journal of the American Chemical Society, Vol. 137, Issue 42
  • DOI: 10.1021/jacs.5b07908

Transmutable nanoparticles with reconfigurable surface ligands
journal, February 2016


Synthetically programmable nanoparticle superlattices using a hollow three-dimensional spacer approach
journal, December 2011

  • Auyeung, Evelyn; Cutler, Joshua I.; Macfarlane, Robert J.
  • Nature Nanotechnology, Vol. 7, Issue 1
  • DOI: 10.1038/nnano.2011.222

Diamond family of nanoparticle superlattices
journal, February 2016


Lattice engineering through nanoparticle–DNA frameworks
journal, February 2016

  • Tian, Ye; Zhang, Yugang; Wang, Tong
  • Nature Materials, Vol. 15, Issue 6, p. 654-661
  • DOI: 10.1038/nmat4571

Orthogonal Self-Assembly on Colloidal Gold-Platinum Nanorods
journal, August 1999


Biphasic Janus particles with nanoscale anisotropy
journal, September 2005

  • Roh, Kyung-Ho; Martin, David C.; Lahann, Joerg
  • Nature Materials, Vol. 4, Issue 10, p. 759-763
  • DOI: 10.1038/nmat1486

Asymmetric Functionalization of Gold Nanoparticles with Oligonucleotides
journal, July 2006

  • Xu, Xiaoyang; Rosi, Nathaniel L.; Wang, Yuhuang
  • Journal of the American Chemical Society, Vol. 128, Issue 29
  • DOI: 10.1021/ja061980b

Guided hierarchical co-assembly of soft patchy nanoparticles
journal, November 2013

  • Gröschel, André H.; Walther, Andreas; Löbling, Tina I.
  • Nature, Vol. 503, Issue 7475
  • DOI: 10.1038/nature12610

Transfer of molecular recognition information from DNA nanostructures to gold nanoparticles
journal, January 2016

  • Edwardson, Thomas G. W.; Lau, Kai Lin; Bousmail, Danny
  • Nature Chemistry, Vol. 8, Issue 2
  • DOI: 10.1038/nchem.2420

Self-Assembly of a Tetrahedral Lectin into Predesigned Diamondlike Protein Crystals
journal, August 1999


Computational design of a protein crystal
journal, April 2012

  • Lanci, C. J.; MacDermaid, C. M.; Kang, S. -g.
  • Proceedings of the National Academy of Sciences, Vol. 109, Issue 19
  • DOI: 10.1073/pnas.1112595109

Protein crystalline frameworks with controllable interpenetration directed by dual supramolecular interactions
journal, August 2014

  • Sakai, Fuji; Yang, Guang; Weiss, Manfred S.
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms5634

A Metal Organic Framework with Spherical Protein Nodes: Rational Chemical Design of 3D Protein Crystals
journal, September 2015

  • Sontz, Pamela A.; Bailey, Jake B.; Ahn, Sunhyung
  • Journal of the American Chemical Society, Vol. 137, Issue 36
  • DOI: 10.1021/jacs.5b07463

Design of ordered two-dimensional arrays mediated by noncovalent protein-protein interfaces
journal, June 2015


Self-assembly of coherently dynamic, auxetic, two-dimensional protein crystals
journal, May 2016

  • Suzuki, Yuta; Cardone, Giovanni; Restrepo, David
  • Nature, Vol. 533, Issue 7603
  • DOI: 10.1038/nature17633

Electrostatic assembly of binary nanoparticle superlattices using protein cages
journal, December 2012

  • Kostiainen, Mauri A.; Hiekkataipale, Panu; Laiho, Ari
  • Nature Nanotechnology, Vol. 8, Issue 1
  • DOI: 10.1038/nnano.2012.220

Binary Protein Crystals for the Assembly of Inorganic Nanoparticle Superlattices
journal, September 2016

  • Künzle, Matthias; Eckert, Thomas; Beck, Tobias
  • Journal of the American Chemical Society, Vol. 138, Issue 39
  • DOI: 10.1021/jacs.6b07260

DNA-Mediated Cellular Delivery of Functional Enzymes
journal, November 2015

  • Brodin, Jeffrey D.; Sprangers, Anthony J.; McMillan, Janet R.
  • Journal of the American Chemical Society, Vol. 137, Issue 47
  • DOI: 10.1021/jacs.5b09711

A Strain-Promoted [3 + 2] Azide−Alkyne Cycloaddition for Covalent Modification of Biomolecules in Living Systems
journal, November 2004

  • Agard, Nicholas J.; Prescher, Jennifer A.; Bertozzi, Carolyn R.
  • Journal of the American Chemical Society, Vol. 126, Issue 46
  • DOI: 10.1021/ja044996f

DNA-mediated nanoparticle crystallization into Wulff polyhedra
journal, November 2013

  • Auyeung, Evelyn; Li, Ting I. N. G.; Senesi, Andrew J.
  • Nature, Vol. 505, Issue 7481
  • DOI: 10.1038/nature12739

Heterogeneous Ligand–Nanoparticle Distributions: A Major Obstacle to Scientific Understanding and Commercial Translation
journal, November 2011

  • Mullen, Douglas G.; Banaszak Holl, Mark M.
  • Accounts of Chemical Research, Vol. 44, Issue 11
  • DOI: 10.1021/ar1001389

Modeling the Crystallization of Spherical Nucleic Acid Nanoparticle Conjugates with Molecular Dynamics Simulations
journal, April 2012

  • Li, Ting I. N. G.; Sknepnek, Rastko; Macfarlane, Robert J.
  • Nano Letters, Vol. 12, Issue 5
  • DOI: 10.1021/nl300679e

Works referencing / citing this record:

Building expanded structures from tetrahedral DNA branching elements, RNA and TMV protein
journal, January 2018

  • Wenz, Nana L.; Piasecka, Sylwia; Kalinowski, Matthäus
  • Nanoscale, Vol. 10, Issue 14
  • DOI: 10.1039/c7nr07743b

DNA‐ and Field‐Mediated Assembly of Magnetic Nanoparticles into High‐Aspect Ratio Crystals
journal, December 2019

  • Park, Sarah S.; Urbach, Zachary J.; Brisbois, Chase A.
  • Advanced Materials, Vol. 32, Issue 4
  • DOI: 10.1002/adma.201906626

Efficient bioactive oligonucleotide‐protein conjugation for cell‐targeted cancer therapy
journal, March 2019

  • Aviñó, Anna; Unzueta, Ugutz; Virtudes Céspedes, María
  • ChemistryOpen, Vol. 8, Issue 3
  • DOI: 10.1002/open.201900038

Programmable Atom Equivalents: Atomic Crystallization as a Framework for Synthesizing Nanoparticle Superlattices
journal, February 2019

  • Gabrys, Paul A.; Zornberg, Leonardo Z.; Macfarlane, Robert J.
  • Small, Vol. 15, Issue 26
  • DOI: 10.1002/smll.201805424

Crystallizing protein assemblies via free and grafted linkers
journal, January 2019

  • Dahal, Yuba Raj; Olvera de la Cruz, Monica
  • Soft Matter, Vol. 15, Issue 21
  • DOI: 10.1039/c9sm00693a

Hamilton Receptor‐Mediated Self‐Assembly of Orthogonally Functionalized Au and TiO 2 Nanoparticles
journal, March 2019

  • Ali, Muhammad; Hasenöhrl, Dominik H.; Zeininger, Lukas
  • Helvetica Chimica Acta, Vol. 102, Issue 4
  • DOI: 10.1002/hlca.201900015

Crystal engineering with DNA
journal, February 2019

  • Laramy, Christine R.; O’Brien, Matthew N.; Mirkin, Chad A.
  • Nature Reviews Materials, Vol. 4, Issue 3
  • DOI: 10.1038/s41578-019-0087-2

Significance of DNA bond strength in programmable nanoparticle thermodynamics and dynamics
journal, January 2018


Particle analogs of electrons in colloidal crystals
journal, June 2019


Assembling Ordered Crystals with Disperse Building Blocks
journal, July 2019


Defining the Structure of a Protein–Spherical Nucleic Acid Conjugate and Its Counterionic Cloud
journal, March 2018

  • Krishnamoorthy, Kurinji; Hoffmann, Kyle; Kewalramani, Sumit
  • ACS Central Science, Vol. 4, Issue 3
  • DOI: 10.1021/acscentsci.7b00577