DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Tuning colloidal quantum dot band edge positions through solution-phase surface chemistry modification

Abstract

Band edge positions of semiconductors determine their functionality in many optoelectronic applications such as photovoltaics, photoelectrochemical cells and light emitting diodes. Here we show that band edge positions of lead sulfide (PbS) colloidal semiconductor nanocrystals, specifically quantum dots (QDs), can be tuned over 2.0 eV through surface chemistry modification. We achieved this remarkable control through the development of simple, robust and scalable solution-phase ligand exchange methods, which completely replace native ligands with functionalized cinnamate ligands, allowing for well-defined, highly tunable chemical systems. By combining experiments and ab initio simulations, we establish clear relationships between QD surface chemistry and the band edge positions of ligand/QD hybrid systems. We find that in addition to ligand dipole, inter-QD ligand shell inter-digitization contributes to the band edge shifts. We expect that our established relationships and principles can help guide future optimization of functional organic/inorganic hybrid nanostructures for diverse optoelectronic applications.

Authors:
 [1];  [2];  [3];  [4];  [5];  [5]; ORCiD logo [1];  [6];  [2];  [5]
  1. National Renewable Energy Lab. (NREL), Golden, CO (United States); Univ. of Colorado, Boulder, CO (United States)
  2. Argonne National Lab. (ANL), Lemont, IL (United States); Univ. of Chicago, Chicago, IL (United States)
  3. Univ. of Chicago, Chicago, IL (United States)
  4. Colorado School of Mines, Golden, CO (United States)
  5. National Renewable Energy Lab. (NREL), Golden, CO (United States)
  6. National Renewable Energy Lab. (NREL), Golden, CO (United States); Colorado School of Mines, Golden, CO (United States)
Publication Date:
Research Org.:
National Renewable Energy Laboratory (NREL), Golden, CO (United States); Energy Frontier Research Centers (EFRC) (United States). Center for Advanced Solar Photophysics (CASP); Argonne National Laboratory (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); USDOE Office of Science (SC), Basic Energy Sciences (BES). Chemical Sciences, Geosciences & Biosciences Division
OSTI Identifier:
1357948
Alternate Identifier(s):
OSTI ID: 1373584
Report Number(s):
NREL/JA-5900-66738
Journal ID: ISSN 2041-1723
Grant/Contract Number:  
AC36-08GO28308; AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
Nature Communications
Additional Journal Information:
Journal Volume: 8; Journal ID: ISSN 2041-1723
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; quantum dots; band edge positions; ligand exchange; electronic properties and materials; organic-inorganic nanostructures; chemical synthesis

Citation Formats

Kroupa, Daniel M., Vörös, Márton, Brawand, Nicholas P., McNichols, Brett W., Miller, Elisa M., Gu, Jing, Nozik, Arthur J., Sellinger, Alan, Galli, Giulia, and Beard, Matthew C. Tuning colloidal quantum dot band edge positions through solution-phase surface chemistry modification. United States: N. p., 2017. Web. doi:10.1038/ncomms15257.
Kroupa, Daniel M., Vörös, Márton, Brawand, Nicholas P., McNichols, Brett W., Miller, Elisa M., Gu, Jing, Nozik, Arthur J., Sellinger, Alan, Galli, Giulia, & Beard, Matthew C. Tuning colloidal quantum dot band edge positions through solution-phase surface chemistry modification. United States. https://doi.org/10.1038/ncomms15257
Kroupa, Daniel M., Vörös, Márton, Brawand, Nicholas P., McNichols, Brett W., Miller, Elisa M., Gu, Jing, Nozik, Arthur J., Sellinger, Alan, Galli, Giulia, and Beard, Matthew C. Tue . "Tuning colloidal quantum dot band edge positions through solution-phase surface chemistry modification". United States. https://doi.org/10.1038/ncomms15257. https://www.osti.gov/servlets/purl/1357948.
@article{osti_1357948,
title = {Tuning colloidal quantum dot band edge positions through solution-phase surface chemistry modification},
author = {Kroupa, Daniel M. and Vörös, Márton and Brawand, Nicholas P. and McNichols, Brett W. and Miller, Elisa M. and Gu, Jing and Nozik, Arthur J. and Sellinger, Alan and Galli, Giulia and Beard, Matthew C.},
abstractNote = {Band edge positions of semiconductors determine their functionality in many optoelectronic applications such as photovoltaics, photoelectrochemical cells and light emitting diodes. Here we show that band edge positions of lead sulfide (PbS) colloidal semiconductor nanocrystals, specifically quantum dots (QDs), can be tuned over 2.0 eV through surface chemistry modification. We achieved this remarkable control through the development of simple, robust and scalable solution-phase ligand exchange methods, which completely replace native ligands with functionalized cinnamate ligands, allowing for well-defined, highly tunable chemical systems. By combining experiments and ab initio simulations, we establish clear relationships between QD surface chemistry and the band edge positions of ligand/QD hybrid systems. We find that in addition to ligand dipole, inter-QD ligand shell inter-digitization contributes to the band edge shifts. We expect that our established relationships and principles can help guide future optimization of functional organic/inorganic hybrid nanostructures for diverse optoelectronic applications.},
doi = {10.1038/ncomms15257},
journal = {Nature Communications},
number = ,
volume = 8,
place = {United States},
year = {Tue May 16 00:00:00 EDT 2017},
month = {Tue May 16 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 183 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

Relaxation of Exciton Confinement in CdSe Quantum Dots by Modification with a Conjugated Dithiocarbamate Ligand
journal, May 2010

  • Frederick, Matthew T.; Weiss, Emily A.
  • ACS Nano, Vol. 4, Issue 6
  • DOI: 10.1021/nn1007435

Solar Cells Based on Inks of n-Type Colloidal Quantum Dots
journal, September 2014

  • Ning, Zhijun; Dong, Haopeng; Zhang, Qiong
  • ACS Nano, Vol. 8, Issue 10
  • DOI: 10.1021/nn503569p

PbSe Quantum Dot Field-Effect Transistors with Air-Stable Electron Mobilities above 7 cm 2 V –1 s –1
journal, March 2013

  • Liu, Yao; Tolentino, Jason; Gibbs, Markelle
  • Nano Letters, Vol. 13, Issue 4
  • DOI: 10.1021/nl304753n

A Solution NMR Toolbox for Characterizing the Surface Chemistry of Colloidal Nanocrystals
journal, February 2013

  • Hens, Zeger; Martins, José C.
  • Chemistry of Materials, Vol. 25, Issue 8
  • DOI: 10.1021/cm303361s

Colloidal Arenethiolate-Capped PbS Quantum Dots: Optoelectronic Properties, Self-Assembly, and Application in Solution-Cast Photovoltaics
journal, June 2013

  • Giansante, Carlo; Carbone, Luigi; Giannini, Cinzia
  • The Journal of Physical Chemistry C, Vol. 117, Issue 25
  • DOI: 10.1021/jp403066q

Improving Performance in Colloidal Quantum Dot Solar Cells by Tuning Band Alignment through Surface Dipole Moments
journal, January 2015

  • Santra, Pralay K.; Palmstrom, Axel F.; Tanskanen, Jukka T.
  • The Journal of Physical Chemistry C, Vol. 119, Issue 6
  • DOI: 10.1021/acs.jpcc.5b00341

QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials
journal, September 2009

  • Giannozzi, Paolo; Baroni, Stefano; Bonini, Nicola
  • Journal of Physics: Condensed Matter, Vol. 21, Issue 39, Article No. 395502
  • DOI: 10.1088/0953-8984/21/39/395502

Perspectives on the Physical Chemistry of Semiconductor Nanocrystals
journal, January 1996

  • Alivisatos, A. P.
  • The Journal of Physical Chemistry, Vol. 100, Issue 31
  • DOI: 10.1021/jp9535506

Air-Stable n-Doped Colloidal HgS Quantum Dots
journal, March 2014

  • Jeong, Kwang Seob; Deng, Zhiyou; Keuleyan, Sean
  • The Journal of Physical Chemistry Letters, Vol. 5, Issue 7
  • DOI: 10.1021/jz500436x

Optimized norm-conserving Vanderbilt pseudopotentials
journal, August 2013


Ligand-Induced Changes in the Characteristic Size-Dependent Electronic Energies of CdSe Nanocrystals
journal, June 2013

  • Bloom, Brian P.; Zhao, Liu-Bin; Wang, Yang
  • The Journal of Physical Chemistry C, Vol. 117, Issue 43
  • DOI: 10.1021/jp403164w

Surfactant-assisted growth of CdS thin films for photovoltaic applications
journal, May 2006

  • Perkins, Craig L.; Hasoon, Falah S.
  • Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, Vol. 24, Issue 3
  • DOI: 10.1116/1.2194929

Interparticle Spacing and Structural Ordering in Superlattice PbS Nanocrystal Solids Undergoing Ligand Exchange
journal, December 2014

  • Weidman, Mark C.; Yager, Kevin G.; Tisdale, William A.
  • Chemistry of Materials, Vol. 27, Issue 2
  • DOI: 10.1021/cm503626s

Size-Tunable, Bright, and Stable PbS Quantum Dots: A Surface Chemistry Study
journal, February 2011

  • Moreels, Iwan; Justo, Yolanda; De Geyter, Bram
  • ACS Nano, Vol. 5, Issue 3
  • DOI: 10.1021/nn103050w

Ligand Exchange and the Stoichiometry of Metal Chalcogenide Nanocrystals: Spectroscopic Observation of Facile Metal-Carboxylate Displacement and Binding
journal, November 2013

  • Anderson, Nicholas C.; Hendricks, Mark P.; Choi, Joshua J.
  • Journal of the American Chemical Society, Vol. 135, Issue 49, p. 18536-18548
  • DOI: 10.1021/ja4086758

The surface science of nanocrystals
journal, January 2016

  • Boles, Michael A.; Ling, Daishun; Hyeon, Taeghwan
  • Nature Materials, Vol. 15, Issue 2
  • DOI: 10.1038/nmat4526

Effects of Disorder on Electronic Properties of Nanocrystal Assemblies
journal, January 2015

  • Yang, Jun; Wise, Frank W.
  • The Journal of Physical Chemistry C, Vol. 119, Issue 6
  • DOI: 10.1021/jp5098469

Utilizing Self-Exchange To Address the Binding of Carboxylic Acid Ligands to CdSe Quantum Dots
journal, July 2010

  • Fritzinger, Bernd; Capek, Richard K.; Lambert, Karel
  • Journal of the American Chemical Society, Vol. 132, Issue 29
  • DOI: 10.1021/ja104351q

Kinetics of the self-assembly of nanocrystal superlattices measured by real-time in situ X-ray scattering
journal, March 2016

  • Weidman, Mark C.; Smilgies, Detlef-M.; Tisdale, William A.
  • Nature Materials, Vol. 15, Issue 7
  • DOI: 10.1038/nmat4600

Energy Level Modification in Lead Sulfide Quantum Dot Thin Films through Ligand Exchange
journal, May 2014

  • Brown, Patrick R.; Kim, Donghun; Lunt, Richard R.
  • ACS Nano, Vol. 8, Issue 6
  • DOI: 10.1021/nn500897c

“Darker-than-Black” PbS Quantum Dots: Enhancing Optical Absorption of Colloidal Semiconductor Nanocrystals via Short Conjugated Ligands
journal, January 2015

  • Giansante, Carlo; Infante, Ivan; Fabiano, Eduardo
  • Journal of the American Chemical Society, Vol. 137, Issue 5
  • DOI: 10.1021/ja510739q

Tuning Semiconductor Band Edge Energies for Solar Photocatalysis via Surface Ligand Passivation
journal, December 2011

  • Yang, Shenyuan; Prendergast, David; Neaton, Jeffrey B.
  • Nano Letters, Vol. 12, Issue 1
  • DOI: 10.1021/nl203669k

Highly Efficient Multiple Exciton Generation in Colloidal PbSe and PbS Quantum Dots
journal, May 2005

  • Ellingson, Randy J.; Beard, Matthew C.; Johnson, Justin C.
  • Nano Letters, Vol. 5, Issue 5, p. 865-871
  • DOI: 10.1021/nl0502672

Electronic Processes within Quantum Dot-Molecule Complexes
journal, August 2016


Improved performance and stability in quantum dot solar cells through band alignment engineering
journal, May 2014

  • Chuang, Chia-Hao M.; Brown, Patrick R.; Bulović, Vladimir
  • Nature Materials, Vol. 13, Issue 8, p. 796-801
  • DOI: 10.1038/nmat3984

A tunable library of substituted thiourea precursors to metal sulfide nanocrystals
journal, June 2015


Optimization algorithm for the generation of ONCV pseudopotentials
journal, November 2015


Metal Halide Solid-State Surface Treatment for High Efficiency PbS and PbSe QD Solar Cells
journal, April 2015

  • Crisp, Ryan W.; Kroupa, Daniel M.; Marshall, Ashley R.
  • Scientific Reports, Vol. 5, Issue 1
  • DOI: 10.1038/srep09945

In situ spectroscopic characterization of a solution-phase X-type ligand exchange at colloidal lead sulphide quantum dot surfaces
journal, January 2016

  • Kroupa, D. M.; Anderson, N. C.; Castaneda, C. V.
  • Chemical Communications, Vol. 52, Issue 96
  • DOI: 10.1039/C6CC08114B

Revisiting the Valence and Conduction Band Size Dependence of PbS Quantum Dot Thin Films
journal, February 2016


Molecular Design for Tuning Work Functions of Transparent Conducting Electrodes
journal, June 2015

  • Koldemir, Unsal; Braid, Jennifer L.; Morgenstern, Amanda
  • The Journal of Physical Chemistry Letters, Vol. 6, Issue 12
  • DOI: 10.1021/acs.jpclett.5b00420

Polar Ligand Adsorption Controls Semiconductor Surface Potentials
journal, April 1994

  • Bruening, Merlin; Moons, Ellen; Yaron-Marcovich, Dana
  • Journal of the American Chemical Society, Vol. 116, Issue 7
  • DOI: 10.1021/ja00086a029

Electronic Processes within Quantum Dot-Molecule Complexes
journal, August 2016


Molecular Design for Tuning Work Functions of Transparent Conducting Electrodes
journal, June 2015

  • Koldemir, Unsal; Braid, Jennifer L.; Morgenstern, Amanda
  • The Journal of Physical Chemistry Letters, Vol. 6, Issue 12
  • DOI: 10.1021/acs.jpclett.5b00420

Revisiting the Valence and Conduction Band Size Dependence of PbS Quantum Dot Thin Films
journal, February 2016


Utilizing Self-Exchange To Address the Binding of Carboxylic Acid Ligands to CdSe Quantum Dots
journal, July 2010

  • Fritzinger, Bernd; Capek, Richard K.; Lambert, Karel
  • Journal of the American Chemical Society, Vol. 132, Issue 29
  • DOI: 10.1021/ja104351q

Ligand Exchange and the Stoichiometry of Metal Chalcogenide Nanocrystals: Spectroscopic Observation of Facile Metal-Carboxylate Displacement and Binding
journal, November 2013

  • Anderson, Nicholas C.; Hendricks, Mark P.; Choi, Joshua J.
  • Journal of the American Chemical Society, Vol. 135, Issue 49, p. 18536-18548
  • DOI: 10.1021/ja4086758

“Darker-than-Black” PbS Quantum Dots: Enhancing Optical Absorption of Colloidal Semiconductor Nanocrystals via Short Conjugated Ligands
journal, January 2015

  • Giansante, Carlo; Infante, Ivan; Fabiano, Eduardo
  • Journal of the American Chemical Society, Vol. 137, Issue 5
  • DOI: 10.1021/ja510739q

Colloidal Arenethiolate-Capped PbS Quantum Dots: Optoelectronic Properties, Self-Assembly, and Application in Solution-Cast Photovoltaics
journal, June 2013

  • Giansante, Carlo; Carbone, Luigi; Giannini, Cinzia
  • The Journal of Physical Chemistry C, Vol. 117, Issue 25
  • DOI: 10.1021/jp403066q

Air-Stable n-Doped Colloidal HgS Quantum Dots
journal, March 2014

  • Jeong, Kwang Seob; Deng, Zhiyou; Keuleyan, Sean
  • The Journal of Physical Chemistry Letters, Vol. 5, Issue 7
  • DOI: 10.1021/jz500436x

Highly Efficient Multiple Exciton Generation in Colloidal PbSe and PbS Quantum Dots
journal, May 2005

  • Ellingson, Randy J.; Beard, Matthew C.; Johnson, Justin C.
  • Nano Letters, Vol. 5, Issue 5, p. 865-871
  • DOI: 10.1021/nl0502672

Tuning Semiconductor Band Edge Energies for Solar Photocatalysis via Surface Ligand Passivation
journal, December 2011

  • Yang, Shenyuan; Prendergast, David; Neaton, Jeffrey B.
  • Nano Letters, Vol. 12, Issue 1
  • DOI: 10.1021/nl203669k

PbSe Quantum Dot Field-Effect Transistors with Air-Stable Electron Mobilities above 7 cm 2 V –1 s –1
journal, March 2013

  • Liu, Yao; Tolentino, Jason; Gibbs, Markelle
  • Nano Letters, Vol. 13, Issue 4
  • DOI: 10.1021/nl304753n

Size-Tunable, Bright, and Stable PbS Quantum Dots: A Surface Chemistry Study
journal, February 2011

  • Moreels, Iwan; Justo, Yolanda; De Geyter, Bram
  • ACS Nano, Vol. 5, Issue 3
  • DOI: 10.1021/nn103050w

Energy Level Modification in Lead Sulfide Quantum Dot Thin Films through Ligand Exchange
journal, May 2014

  • Brown, Patrick R.; Kim, Donghun; Lunt, Richard R.
  • ACS Nano, Vol. 8, Issue 6
  • DOI: 10.1021/nn500897c

Solar Cells Based on Inks of n-Type Colloidal Quantum Dots
journal, September 2014

  • Ning, Zhijun; Dong, Haopeng; Zhang, Qiong
  • ACS Nano, Vol. 8, Issue 10
  • DOI: 10.1021/nn503569p

Improved performance and stability in quantum dot solar cells through band alignment engineering
journal, May 2014

  • Chuang, Chia-Hao M.; Brown, Patrick R.; Bulović, Vladimir
  • Nature Materials, Vol. 13, Issue 8, p. 796-801
  • DOI: 10.1038/nmat3984

Optimization Algorithm for the Generation of ONCV Pseudopotentials
text, January 2015


Works referencing / citing this record:

III–V colloidal nanocrystals: control of covalent surfaces
journal, January 2020

  • Kim, Youngsik; Chang, Jun Hyuk; Choi, Hyekyoung
  • Chemical Science, Vol. 11, Issue 4
  • DOI: 10.1039/c9sc04290c

Nahinfrarotaktive Bleichalkogenid‐Quantenpunkte: Herstellung, postsynthetischer Ligandenaustausch und Anwendungen in Solarzellen
journal, February 2019

  • Shrestha, Aabhash; Batmunkh, Munkhbayar; Tricoli, Antonio
  • Angewandte Chemie, Vol. 131, Issue 16
  • DOI: 10.1002/ange.201804053

Energy level tuned indium arsenide colloidal quantum dot films for efficient photovoltaics
journal, October 2018


Cascade surface modification of colloidal quantum dot inks enables efficient bulk homojunction photovoltaics
journal, January 2020

  • Choi, Min-Jae; García de Arquer, F. Pelayo; Proppe, Andrew H.
  • Nature Communications, Vol. 11, Issue 1
  • DOI: 10.1038/s41467-019-13437-2

Exchange equilibria of carboxylate-terminated ligands at PbS nanocrystal surfaces
journal, January 2018

  • Kessler, Melody L.; Starr, Hannah E.; Knauf, Robin R.
  • Physical Chemistry Chemical Physics, Vol. 20, Issue 36
  • DOI: 10.1039/c8cp04275f

Enhancing Quantum Dot Solar Cells Stability with a Semiconducting Single-Walled Carbon Nanotubes Interlayer Below the Top Anode
text, January 2018


Quantum Dot Size Effect on the Frontier Molecular Orbital Energies in the Presence of Different Aquatic Environmental Ligands
journal, November 2018

  • Bresolin, Bianca-Maria; Tang, Walter Z.; Sillanpää, Mika
  • Environmental Processes, Vol. 5, Issue 4
  • DOI: 10.1007/s40710-018-0337-0

Multi-scale approach for modeling stability, aggregation, and network formation of nanoparticles suspended in aqueous solutions
journal, January 2019

  • Cardellini, Annalisa; Alberghini, Matteo; Govind Rajan, Ananth
  • Nanoscale, Vol. 11, Issue 9
  • DOI: 10.1039/c8nr08782b

Efficient Hybrid Tandem Solar Cells Based on Optical Reinforcement of Colloidal Quantum Dots with Organic Bulk Heterojunctions
journal, January 2020

  • Aqoma, Havid; Imran, Imil Fadli; Mubarok, Muhibullah Al
  • Advanced Energy Materials, Vol. 10, Issue 7
  • DOI: 10.1002/aenm.201903294

Efficient Water Splitting Cascade Photoanodes with Ligand-Engineered MnO Cocatalysts
journal, August 2018

  • Lee, Mi Gyoung; Jin, Kyoungsuk; Kwon, Ki Chang
  • Advanced Science, Vol. 5, Issue 10
  • DOI: 10.1002/advs.201800727

Enhanced photoredox activity of CsPbBr 3 nanocrystals by quantitative colloidal ligand exchange
journal, November 2019

  • Lu, Haipeng; Zhu, Xiaolin; Miller, Collin
  • The Journal of Chemical Physics, Vol. 151, Issue 20
  • DOI: 10.1063/1.5129261

Enhancing Quantum Dot Solar Cells Stability with a Semiconducting Single‐Walled Carbon Nanotubes Interlayer Below the Top Anode
journal, October 2018

  • Salazar‐Rios, Jorge Mario; Sukharevska, Nataliia; Speirs, Mark Jonathan
  • Advanced Materials Interfaces, Vol. 5, Issue 22
  • DOI: 10.1002/admi.201801155

Highly Efficient and Stable Perovskite Solar Cells via Modification of Energy Levels at the Perovskite/Carbon Electrode Interface
journal, January 2019


Highly Stabilized Quantum Dot Ink for Efficient Infrared Light Absorbing Solar Cells
journal, October 2019

  • Jia, Donglin; Chen, Jingxuan; Zheng, Siyu
  • Advanced Energy Materials, Vol. 9, Issue 44
  • DOI: 10.1002/aenm.201902809

Enhancing the photocatalytic properties of PbS QD solids: the ligand exchange approach
journal, January 2019

  • Abargues, Rafael; Navarro, Juan; Rodríguez-Cantó, Pedro J.
  • Nanoscale, Vol. 11, Issue 4
  • DOI: 10.1039/c8nr07760f

Carbon Quantum Dot as Electron Transporting Layer in Organic Light Emitting Diode
journal, July 2019

  • Alam, Md. Bayazeed; Yadav, Kanchan; Shukla, Devyani
  • ChemistrySelect, Vol. 4, Issue 25
  • DOI: 10.1002/slct.201901551

Highly stable QLEDs with improved hole injection via quantum dot structure tailoring
journal, July 2018


Efficient Water Splitting Cascade Photoanodes with Ligand-Engineered MnO Cocatalysts
journal, August 2018

  • Lee, Mi Gyoung; Jin, Kyoungsuk; Kwon, Ki Chang
  • Advanced Science, Vol. 5, Issue 10
  • DOI: 10.1002/advs.201800727

Engineering the Band Alignment in QD Heterojunction Films via Ligand Exchange
journal, November 2019

  • Grimaldi, Gianluca; van den Brom, Mark J.; du Fossé, Indy
  • The Journal of Physical Chemistry C, Vol. 123, Issue 49
  • DOI: 10.1021/acs.jpcc.9b09470

Colloidal Quantum Dot Inks for Single-Step-Fabricated Field-Effect Transistors: The Importance of Postdeposition Ligand Removal
journal, January 2018

  • Balazs, Daniel M.; Rizkia, Nisrina; Fang, Hong-Hua
  • ACS Applied Materials & Interfaces, Vol. 10, Issue 6
  • DOI: 10.1021/acsami.7b16882

Energy level tuned indium arsenide colloidal quantum dot films for efficient photovoltaics
journal, October 2018