DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Shapes of rotating superfluid helium nanodroplets

Abstract

Rotating superfluid He droplets of approximately 1 μm in diameter were obtained in a free nozzle beam expansion of liquid He in vacuum and were studied by single-shot coherent diffractive imaging using an x-ray free electron laser. The formation of strongly deformed droplets is evidenced by large anisotropies and intensity anomalies (streaks) in the obtained diffraction images. The analysis of the images shows that in addition to previously described axially symmetric oblate shapes, some droplets exhibit prolate shapes. Forward modeling of the diffraction images indicates that the shapes of rotating superfluid droplets are very similar to their classical counterparts, giving direct access to the droplet angular momenta and angular velocities. The analyses of the radial intensity distribution and appearance statistics of the anisotropic images confirm the existence of oblate metastable superfluid droplets with large angular momenta beyond the classical bifurcation threshold.

Authors:
 [1];  [2];  [2];  [3];  [4];  [5];  [6];  [7];  [8];  [9];  [10];  [6];  [11];  [12];  [13];  [14];  [6];  [15];  [16];  [17]
  1. Univ. of Southern California, Los Angeles, CA (United States). Dept. of Physics and Astronomy
  2. Univ. of Southern California, Los Angeles, CA (United States). Dept. of Chemistry
  3. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Chemical Sciences Division; Univ. of California, Berkeley, CA (United States). Dept. of Chemistry
  4. SLAC National Accelerator Lab., Menlo Park, CA (United States). Linac Coherent Light Source (LCLS); Argonne National Lab. (ANL), Lemont, IL (United States)
  5. SLAC National Accelerator Lab., Menlo Park, CA (United States). Linac Coherent Light Source (LCLS); Stanford Univ., Stanford, CA (United States). Dept. of Applied Physics
  6. Technical Univ. of Berlin, Berlin (Germany). Inst. of Optics and Atomic Physics
  7. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Chemical Sciences Division; Univ. of California, Berkeley, CA (United States). Dept. of Chemistry; Vescent Photonics, Inc., Golden, CO (United States)
  8. Univ. of Southern California, Los Angeles, CA (United States). Dept. of Chemistry; IPG Photonics, Santa Clara, CA (United States)
  9. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Chemical Sciences Division; Aarhus Univ., Aarhus (Denmark). Dept. of Chemistry
  10. SLAC National Accelerator Lab., Menlo Park, CA (United States). Linac Coherent Light Source (LCLS); Technical Univ. of Berlin, Berlin (Germany). Inst. of Optics and Atomic Physics
  11. SLAC National Accelerator Lab., Menlo Park, CA (United States). Linac Coherent Light Source (LCLS)
  12. SLAC National Accelerator Lab., Menlo Park, CA (United States). Linac Coherent Light Source (LCLS); California Lutheran Univ., Thousand Oaks, CA (United States)
  13. Univ. of Illinois at Urbana-Champaign, Urbana, IL (United States). Dept. of Materials Science and Engineering; Univ. of Southern California, Los Angeles, CA (United States). Monk Family Dept. of Chemical Engineering and Materials Science
  14. Univ. of Saskatchewan, Saskatoon, SK (Canada). Dept. of Geological Sciences
  15. SLAC National Accelerator Lab., Menlo Park, CA (United States). Linac Coherent Light Source (LCLS) and Photon Ultrafast Laser Science and Engineering Inst. (PULSE); Argonne National Lab. (ANL), Lemont, IL (United States); Northwestern Univ., Evanston, IL (United States). Dept. of Physics and Astronomy
  16. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Chemical Sciences Division
  17. Univ. of Southern California, Los Angeles, CA (United States). Dept. of Physics and Astronomy and . Dept. of Chemistry
Publication Date:
Research Org.:
SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States); Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES). Chemical Sciences, Geosciences, and Biosciences Division; National Science Foundation (NSF)
OSTI Identifier:
1353180
Alternate Identifier(s):
OSTI ID: 1344133; OSTI ID: 1459382
Grant/Contract Number:  
DMR-1501276; CHE-1362535; AC02-05CH11231; AC02-06CH11357; LA1214; AC02-76SF00515
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review B
Additional Journal Information:
Journal Volume: 95; Journal Issue: 6; Journal ID: ISSN 2469-9950
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; 77 NANOSCIENCE AND NANOTECHNOLOGY; superfluidity; nanoclusters; x-ray diffraction

Citation Formats

Bernando, Charles, Tanyag, Rico Mayro P., Jones, Curtis, Bacellar, Camila, Bucher, Maximilian, Ferguson, Ken R., Rupp, Daniela, Ziemkiewicz, Michael P., Gomez, Luis F., Chatterley, Adam S., Gorkhover, Tais, Muller, Maria, Bozek, John, Carron, Sebastian, Kwok, Justin, Butler, Samuel L., Moller, Thomas, Bostedt, Christoph, Gessner, Oliver, and Vilesov, Andrey F. Shapes of rotating superfluid helium nanodroplets. United States: N. p., 2017. Web. doi:10.1103/PhysRevB.95.064510.
Bernando, Charles, Tanyag, Rico Mayro P., Jones, Curtis, Bacellar, Camila, Bucher, Maximilian, Ferguson, Ken R., Rupp, Daniela, Ziemkiewicz, Michael P., Gomez, Luis F., Chatterley, Adam S., Gorkhover, Tais, Muller, Maria, Bozek, John, Carron, Sebastian, Kwok, Justin, Butler, Samuel L., Moller, Thomas, Bostedt, Christoph, Gessner, Oliver, & Vilesov, Andrey F. Shapes of rotating superfluid helium nanodroplets. United States. https://doi.org/10.1103/PhysRevB.95.064510
Bernando, Charles, Tanyag, Rico Mayro P., Jones, Curtis, Bacellar, Camila, Bucher, Maximilian, Ferguson, Ken R., Rupp, Daniela, Ziemkiewicz, Michael P., Gomez, Luis F., Chatterley, Adam S., Gorkhover, Tais, Muller, Maria, Bozek, John, Carron, Sebastian, Kwok, Justin, Butler, Samuel L., Moller, Thomas, Bostedt, Christoph, Gessner, Oliver, and Vilesov, Andrey F. Thu . "Shapes of rotating superfluid helium nanodroplets". United States. https://doi.org/10.1103/PhysRevB.95.064510. https://www.osti.gov/servlets/purl/1353180.
@article{osti_1353180,
title = {Shapes of rotating superfluid helium nanodroplets},
author = {Bernando, Charles and Tanyag, Rico Mayro P. and Jones, Curtis and Bacellar, Camila and Bucher, Maximilian and Ferguson, Ken R. and Rupp, Daniela and Ziemkiewicz, Michael P. and Gomez, Luis F. and Chatterley, Adam S. and Gorkhover, Tais and Muller, Maria and Bozek, John and Carron, Sebastian and Kwok, Justin and Butler, Samuel L. and Moller, Thomas and Bostedt, Christoph and Gessner, Oliver and Vilesov, Andrey F.},
abstractNote = {Rotating superfluid He droplets of approximately 1 μm in diameter were obtained in a free nozzle beam expansion of liquid He in vacuum and were studied by single-shot coherent diffractive imaging using an x-ray free electron laser. The formation of strongly deformed droplets is evidenced by large anisotropies and intensity anomalies (streaks) in the obtained diffraction images. The analysis of the images shows that in addition to previously described axially symmetric oblate shapes, some droplets exhibit prolate shapes. Forward modeling of the diffraction images indicates that the shapes of rotating superfluid droplets are very similar to their classical counterparts, giving direct access to the droplet angular momenta and angular velocities. The analyses of the radial intensity distribution and appearance statistics of the anisotropic images confirm the existence of oblate metastable superfluid droplets with large angular momenta beyond the classical bifurcation threshold.},
doi = {10.1103/PhysRevB.95.064510},
journal = {Physical Review B},
number = 6,
volume = 95,
place = {United States},
year = {Thu Feb 16 00:00:00 EST 2017},
month = {Thu Feb 16 00:00:00 EST 2017}
}

Journal Article:

Citation Metrics:
Cited by: 29 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

The Shape and Stability of Rotating Liquid Drops
journal, June 1980

  • Brown, R. A.; Scriven, L. E.
  • Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 371, Issue 1746
  • DOI: 10.1098/rspa.1980.0084

The Mechanism of Nuclear Fission
journal, September 1939


Coupled motion of Xe clusters and quantum vortices in He nanodroplets
journal, May 2016


The Low Density Matter (LDM) beamline at FERMI: optical layout and first commissioning
journal, April 2015

  • Svetina, Cristian; Grazioli, Cesare; Mahne, Nicola
  • Journal of Synchrotron Radiation, Vol. 22, Issue 3
  • DOI: 10.1107/S1600577515005743

Energetics and possible formation and decay mechanisms of vortices in helium nanodroplets
journal, December 2003


Observation of Vortex Lattices in Bose-Einstein Condensates
journal, April 2001


Shapes and vorticities of superfluid helium nanodroplets
journal, August 2014


The Observed Properties of Liquid Helium at the Saturated Vapor Pressure
journal, November 1998

  • Donnelly, Russell J.; Barenghi, Carlo F.
  • Journal of Physical and Chemical Reference Data, Vol. 27, Issue 6
  • DOI: 10.1063/1.556028

Vortex arrays in nanoscopic superfluid helium droplets
journal, March 2015


Nonaxisymmetric Shapes of a Magnetically Levitated and Spinning Water Droplet
journal, December 2008


Equilibrium configurations of rotating charged or gravitating liquid masses with surface tension. II
journal, February 1974


Evolution of a neutron-initiated micro big bang in superfluid He 3 B
journal, July 2014


Rotationally Resolved Spectroscopy of S F 6 in Liquid Helium Clusters: A Molecular Probe of Cluster Temperature
journal, August 1995


Photoionisaton of pure and doped helium nanodroplets
journal, July 2014


Vortex configurations in a freely rotating superfluid drop
journal, January 1995

  • Bauer, Gregory H.; Donnelly, Russell J.; Vinen, W. F.
  • Journal of Low Temperature Physics, Vol. 98, Issue 1-2
  • DOI: 10.1007/BF00754067

Experiments at FLASH
journal, March 2009

  • Bostedt, Christoph; Chapman, Henry N.; Costello, John T.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 601, Issue 1-2
  • DOI: 10.1016/j.nima.2008.12.202

Ultra-fast and ultra-intense x-ray sciences: first results from the Linac Coherent Light Source free-electron laser
journal, August 2013

  • Bostedt, C.; Bozek, J. D.; Bucksbaum, P. H.
  • Journal of Physics B: Atomic, Molecular and Optical Physics, Vol. 46, Issue 16
  • DOI: 10.1088/0953-4075/46/16/164003

The Atomic, Molecular and Optical Science instrument at the Linac Coherent Light Source
journal, April 2015

  • Ferguson, Ken R.; Bucher, Maximilian; Bozek, John D.
  • Journal of Synchrotron Radiation, Vol. 22, Issue 3
  • DOI: 10.1107/S1600577515004646

Ellipsoidal figures of equilibrium-an historical account
journal, May 1967

  • Chandrasekhar, S.
  • Communications on Pure and Applied Mathematics, Vol. 20, Issue 2
  • DOI: 10.1002/cpa.3160200203

Magnetic Levitation and Noncoalescence of Liquid Helium
journal, December 1996


Interpretation of the low damping of subthermal capillary waves (ripplons) on superfluid He 4
journal, February 1996


The shape distribution of splash-form tektites predicted by numerical simulations of rotating fluid drops
journal, January 2011


Sizes of large He droplets
journal, October 2011

  • Gomez, Luis F.; Loginov, Evgeny; Sliter, Russell
  • The Journal of Chemical Physics, Vol. 135, Issue 15
  • DOI: 10.1063/1.3650235

Laboratory simulation of cosmic string formation in the early Universe using superfluid 3He
journal, July 1996

  • Bäuerle, C.; Bunkov, Yu. M.; Fisher, S. N.
  • Nature, Vol. 382, Issue 6589
  • DOI: 10.1038/382332a0

Superfluid Helium Droplets: A Uniquely Cold Nanomatrix for Molecules and Molecular Complexes
journal, May 2004

  • Toennies, J. Peter; Vilesov, Andrey F.
  • Angewandte Chemie International Edition, Vol. 43, Issue 20
  • DOI: 10.1002/anie.200300611

Communication: X-ray coherent diffractive imaging by immersion in nanodroplets
journal, September 2015

  • Tanyag, Rico Mayro P.; Bernando, Charles; Jones, Curtis F.
  • Structural Dynamics, Vol. 2, Issue 5
  • DOI: 10.1063/1.4933297

Traces of Vortices in Superfluid Helium Droplets
journal, April 2012


Vortex Formation and Annihilation in Rotating Superfluid 3He-B at Low Temperatures
journal, October 2010

  • Eltsov, V. B.; de Graaf, R.; Heikkinen, P. J.
  • Journal of Low Temperature Physics, Vol. 161, Issue 5-6
  • DOI: 10.1007/s10909-010-0243-y

Vortex filament method as a tool for computational visualization of quantum turbulence
journal, March 2014

  • Hanninen, R.; Baggaley, A. W.
  • Proceedings of the National Academy of Sciences, Vol. 111, Issue Supplement_1
  • DOI: 10.1073/pnas.1312535111

Infrared spectroscopy of helium nanodroplets: novel methods for physics and chemistry
journal, January 2006

  • Choi, M. Y.; Douberly, G. E.; Falconer, T. M.
  • International Reviews in Physical Chemistry, Vol. 25, Issue 1-2
  • DOI: 10.1080/01442350600625092

Cosmological experiments in superfluid helium?
journal, October 1985


The 3D-architecture of individual free silver nanoparticles captured by X-ray scattering
journal, February 2015

  • Barke, Ingo; Hartmann, Hannes; Rupp, Daniela
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms7187

Artificial tektites: an experimental technique for capturing the shapes of spinning drops
journal, January 2015

  • Baldwin, Kyle A.; Butler, Samuel L.; Hill, Richard J. A.
  • Scientific Reports, Vol. 5, Issue 1
  • DOI: 10.1038/srep07660

Photoabsorption of Ag N ( N 6 6000 ) Nanoclusters Formed in Helium Droplets: Transition from Compact to Multicenter Aggregation
journal, June 2011


Large-format, high-speed, X-ray pnCCDs combined with electron and ion imaging spectrometers in a multipurpose chamber for experiments at 4th generation light sources
journal, March 2010

  • Strüder, Lothar; Epp, Sascha; Rolles, Daniel
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 614, Issue 3
  • DOI: 10.1016/j.nima.2009.12.053

The 3D-architecture of individual free silver nanoparticles captured by X-ray scattering
text, January 2015


Superfluid Helium Droplets: A Uniquely Cold Nanomatrix for Molecules and Molecular Complexes
journal, July 2004


Vortex arrays in nanoscopic superfluid helium droplets
text, January 2015


Works referencing / citing this record:

Coherent diffractive imaging of single helium nanodroplets with a high harmonic generation source
journal, September 2017


Equilibrium shapes of two-phase rotating fluid drops with surface tension
journal, January 2020


Real-time observation of jumping and spinning nanodroplets
journal, January 2020

  • Olshin, Pavel K.; Voss, Jonathan M.; Drabbels, Marcel
  • Structural Dynamics, Vol. 7, Issue 1
  • DOI: 10.1063/1.5135699

Density functional theory of doped superfluid liquid helium and nanodroplets
journal, July 2017

  • Ancilotto, Francesco; Barranco, Manuel; Coppens, François
  • International Reviews in Physical Chemistry, Vol. 36, Issue 4
  • DOI: 10.1080/0144235x.2017.1351672

Infrared spectroscopy in superfluid helium droplets
journal, December 2018


Three-dimensional shapes of spinning helium nanodroplets
text, January 2018


Coherent diffractive imaging of single helium nanodroplets with a high harmonic generation source
text, January 2017