DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Gibbs–Thomson Effect in Planar Nanowires: Orientation and Doping Modulated Growth

Abstract

Epitaxy-enabled bottom-up synthesis of self-assembled planar nanowires via the vapor–liquid–solid mechanism is an emerging and promising approach toward large-scale direct integration of nanowire-based devices without postgrowth alignment. In this paper, by examining large assemblies of indium tin oxide nanowires on yttria-stabilized zirconia substrate, we demonstrate for the first time that the growth dynamics of planar nanowires follows a modified version of the Gibbs–Thomson mechanism, which has been known for the past decades to govern the correlations between thermodynamic supersaturation, growth speed, and nanowire morphology. Furthermore, the substrate orientation strongly influences the growth characteristics of epitaxial planar nanowires as opposed to impact at only the initial nucleation stage in the growth of vertical nanowires. The rich nanowire morphology can be described by a surface-energy-dependent growth model within the Gibbs–Thomson framework, which is further modulated by the tin doping concentration. Our experiments also reveal that the cutoff nanowire diameter depends on the substrate orientation and decreases with increasing tin doping concentration. Finally, these results enable a deeper understanding and control over the growth of planar nanowires, and the insights will help advance the fabrication of self-assembled nanowire devices.

Authors:
 [1];  [2];  [3];  [3];  [4];  [2];  [5]
  1. Nanyang Technological Univ. (Singapore). School of Physical and Mathematical Sciences. Division of Physics and Applied Physics
  2. Univ. of California, San Diego, CA (United States). Dept. of Electrical and Computer Engineering
  3. Nanyang Technological Univ. (Singapore). School of Electrical and Electronic Engineering
  4. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Center for Integrated Nanotechnologies
  5. King Abdullah Univ. of Science and Technology, Thuwal (Saudi Arabia). Materials Science and Engineering
Publication Date:
Research Org.:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Univ. of California, San Diego, CA (United States); King Abdullah University of Science and Technology (KAUST), Thuwal (Saudi Arabia)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); National Science Foundation (NSF)
Contributing Org.:
Nanyang Technological Univ. (Singapore)
OSTI Identifier:
1340236
Report Number(s):
SAND2016-2941J
Journal ID: ISSN 1530-6984; 637545
Grant/Contract Number:  
AC04-94AL85000; AC52-06NA25396; ECCS-1351980; DMR-1503595
Resource Type:
Accepted Manuscript
Journal Name:
Nano Letters
Additional Journal Information:
Journal Volume: 16; Journal Issue: 7; Journal ID: ISSN 1530-6984
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
77 NANOSCIENCE AND NANOTECHNOLOGY; Gibbs-Thomson effect; In2O3; ITO; nanowire; surface energy; vapor-liquid-solid mechanism

Citation Formats

Shen, Youde, Chen, Renjie, Yu, Xuechao, Wang, Qijie, Jungjohann, Katherine L., Dayeh, Shadi A., and Wu, Tom. Gibbs–Thomson Effect in Planar Nanowires: Orientation and Doping Modulated Growth. United States: N. p., 2016. Web. doi:10.1021/acs.nanolett.6b01037.
Shen, Youde, Chen, Renjie, Yu, Xuechao, Wang, Qijie, Jungjohann, Katherine L., Dayeh, Shadi A., & Wu, Tom. Gibbs–Thomson Effect in Planar Nanowires: Orientation and Doping Modulated Growth. United States. https://doi.org/10.1021/acs.nanolett.6b01037
Shen, Youde, Chen, Renjie, Yu, Xuechao, Wang, Qijie, Jungjohann, Katherine L., Dayeh, Shadi A., and Wu, Tom. Thu . "Gibbs–Thomson Effect in Planar Nanowires: Orientation and Doping Modulated Growth". United States. https://doi.org/10.1021/acs.nanolett.6b01037. https://www.osti.gov/servlets/purl/1340236.
@article{osti_1340236,
title = {Gibbs–Thomson Effect in Planar Nanowires: Orientation and Doping Modulated Growth},
author = {Shen, Youde and Chen, Renjie and Yu, Xuechao and Wang, Qijie and Jungjohann, Katherine L. and Dayeh, Shadi A. and Wu, Tom},
abstractNote = {Epitaxy-enabled bottom-up synthesis of self-assembled planar nanowires via the vapor–liquid–solid mechanism is an emerging and promising approach toward large-scale direct integration of nanowire-based devices without postgrowth alignment. In this paper, by examining large assemblies of indium tin oxide nanowires on yttria-stabilized zirconia substrate, we demonstrate for the first time that the growth dynamics of planar nanowires follows a modified version of the Gibbs–Thomson mechanism, which has been known for the past decades to govern the correlations between thermodynamic supersaturation, growth speed, and nanowire morphology. Furthermore, the substrate orientation strongly influences the growth characteristics of epitaxial planar nanowires as opposed to impact at only the initial nucleation stage in the growth of vertical nanowires. The rich nanowire morphology can be described by a surface-energy-dependent growth model within the Gibbs–Thomson framework, which is further modulated by the tin doping concentration. Our experiments also reveal that the cutoff nanowire diameter depends on the substrate orientation and decreases with increasing tin doping concentration. Finally, these results enable a deeper understanding and control over the growth of planar nanowires, and the insights will help advance the fabrication of self-assembled nanowire devices.},
doi = {10.1021/acs.nanolett.6b01037},
journal = {Nano Letters},
number = 7,
volume = 16,
place = {United States},
year = {Thu Jun 02 00:00:00 EDT 2016},
month = {Thu Jun 02 00:00:00 EDT 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 20 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Nanowire-based one-dimensional electronics
journal, October 2006


Functional Nanowires
journal, February 2007

  • Lieber, Charles M.; Wang, Zhong Lin
  • MRS Bulletin, Vol. 32, Issue 2
  • DOI: 10.1557/mrs2007.41

One-Dimensional Nanostructures: Synthesis, Characterization, and Applications
journal, March 2003


Twinning superlattices in indium phosphide nanowires
journal, November 2008

  • Algra, Rienk E.; Verheijen, Marcel A.; Borgström, Magnus T.
  • Nature, Vol. 456, Issue 7220
  • DOI: 10.1038/nature07570

Potential applications of hierarchical branching nanowires in solar energy conversion
journal, July 2009

  • Bierman, Matthew J.; Jin, Song
  • Energy & Environmental Science, Vol. 2, Issue 10, p. 1050-1059
  • DOI: 10.1039/b912095e

25th Anniversary Article: Semiconductor Nanowires - Synthesis, Characterization, and Applications
journal, March 2014

  • Dasgupta, Neil P.; Sun, Jianwei; Liu, Chong
  • Advanced Materials, Vol. 26, Issue 14
  • DOI: 10.1002/adma.201305929

Directed assembly of nanowires
journal, May 2009


Recent advances in large-scale assembly of semiconducting inorganic nanowires and nanofibers for electronics, sensors and photovoltaics
journal, January 2012

  • Long, Yun-Ze; Yu, Miao; Sun, Bin
  • Chemical Society Reviews, Vol. 41, Issue 12
  • DOI: 10.1039/c2cs15335a

Scalable synthesis and device integration of self-registered one-dimensional zinc oxide nanostructures and related materials
journal, January 2013

  • Nikoobakht, Babak; Wang, Xudong; Herzing, Andrew
  • Chem. Soc. Rev., Vol. 42, Issue 1
  • DOI: 10.1039/C2CS35164A

Planar GaAs Nanowires on GaAs (100) Substrates: Self-Aligned, Nearly Twin-Defect Free, and Transfer-Printable
journal, December 2008

  • Fortuna, Seth A.; Wen, Jianguo; Chun, Ik Su
  • Nano Letters, Vol. 8, Issue 12
  • DOI: 10.1021/nl802331m

Formation of Planar Arrays of One-Dimensional p−n Heterojunctions Using Surface-Directed Growth of Nanowires and Nanowalls
journal, September 2010

  • Nikoobakht, Babak; Herzing, Andrew
  • ACS Nano, Vol. 4, Issue 10
  • DOI: 10.1021/nn1019972

Pattern-Selective Epitaxial Growth of Twin-Free Pd Nanowires from Supported Nanocrystal Seeds
journal, March 2010

  • Yoo, Youngdong; Yoon, Ilsun; Lee, Hyoban
  • ACS Nano, Vol. 4, Issue 5
  • DOI: 10.1021/nn100151c

Guided Growth of Millimeter-Long Horizontal Nanowires with Controlled Orientations
journal, August 2011


Self-integration of nanowires into circuits via guided growth
journal, July 2013

  • Schvartzman, M.; Tsivion, D.; Mahalu, D.
  • Proceedings of the National Academy of Sciences, Vol. 110, Issue 38
  • DOI: 10.1073/pnas.1306426110

Direct Observation of Nanoscale Size Effects in Ge Semiconductor Nanowire Growth
journal, October 2010

  • Dayeh, Shadi A.; Picraux, S. T.
  • Nano Letters, Vol. 10, Issue 10
  • DOI: 10.1021/nl1019722

Diffusion-induced growth of GaAs nanowhiskers during molecular beam epitaxy: Theory and experiment
journal, May 2005


Surface Diffusion and Substrate−Nanowire Adatom Exchange in InAs Nanowire Growth
journal, May 2009

  • Dayeh, Shadi A.; Yu, Edward T.; Wang, Deli
  • Nano Letters, Vol. 9, Issue 5
  • DOI: 10.1021/nl900191w

Fundamental aspects of VLS growth
journal, December 1975


Observation of size dependent liquidus depression in the growth of InAs nanowires
journal, November 2006


Diameter-Dependent Composition of Vapor−Liquid−Solid Grown Si 1 - x Ge x Nanowires
journal, October 2007

  • Zhang, Xi; Lew, Kok-Keong; Nimmatoori, Pramod
  • Nano Letters, Vol. 7, Issue 10
  • DOI: 10.1021/nl071132u

Diameter-dependent growth rate of InAs nanowires
journal, October 2007


Diameter Dependent Growth Rate and Interfacial Abruptness in Vapor–Liquid–Solid Si/Si 1− x Ge x Heterostructure Nanowires
journal, April 2008

  • Clark, Trevor E.; Nimmatoori, Pramod; Lew, Kok-Keong
  • Nano Letters, Vol. 8, Issue 4
  • DOI: 10.1021/nl072849k

Manipulating the Growth Kinetics of Vapor–Liquid–Solid Propagated Ge Nanowires
journal, August 2013

  • Biswas, Subhajit; O’Regan, Colm; Petkov, Nikolay
  • Nano Letters, Vol. 13, Issue 9
  • DOI: 10.1021/nl401250x

Identifying Crystallization- and Incorporation-Limited Regimes during Vapor–Liquid–Solid Growth of Si Nanowires
journal, May 2014

  • Pinion, Christopher W.; Nenon, David P.; Christesen, Joseph D.
  • ACS Nano, Vol. 8, Issue 6
  • DOI: 10.1021/nn501403v

Site-Controlled VLS Growth of Planar Nanowires: Yield and Mechanism
journal, November 2014

  • Zhang, Chen; Miao, Xin; Mohseni, Parsian K.
  • Nano Letters, Vol. 14, Issue 12
  • DOI: 10.1021/nl502525z

In-situ Observations of Nanoscale Effects in Germanium Nanowire Growth with Ternary Eutectic Alloys
journal, September 2014


Strong interactive growth behaviours in solution-phase synthesis of three-dimensional metal oxide nanostructures
journal, February 2015

  • Lee, Jung Min; No, You-Shin; Kim, Sungwoong
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms7325

Fabrication of fully transparent nanowire transistors for transparent and flexible electronics
journal, June 2007

  • Ju, Sanghyun; Facchetti, Antonio; Xuan, Yi
  • Nature Nanotechnology, Vol. 2, Issue 6
  • DOI: 10.1038/nnano.2007.151

Bottom-up growth of fully transparent contact layers of indium tin oxide nanowires for light-emitting devices
journal, February 2009

  • O'Dwyer, C.; Szachowicz, M.; Visimberga, G.
  • Nature Nanotechnology, Vol. 4, Issue 4
  • DOI: 10.1038/nnano.2008.418

Infrared Plasmonics with Indium–Tin-Oxide Nanorod Arrays
journal, October 2011

  • Li, Shi Qiang; Guo, Peijun; Zhang, Lingxiao
  • ACS Nano, Vol. 5, Issue 11
  • DOI: 10.1021/nn203406f

Three-Dimensional Nanobranched Indium–Tin-Oxide Anode for Organic Solar Cells
journal, September 2011

  • Yu, Hak Ki; Dong, Wan Jae; Jung, Gwan Ho
  • ACS Nano, Vol. 5, Issue 10
  • DOI: 10.1021/nn2025836

Low Reflectivity and High Flexibility of Tin-Doped Indium Oxide Nanofiber Transparent Electrodes
journal, January 2011

  • Wu, Hui; Hu, Liangbing; Carney, Thomas
  • Journal of the American Chemical Society, Vol. 133, Issue 1
  • DOI: 10.1021/ja109228e

ITO nanowires and nanoparticles for transparent films
journal, October 2011


Phase Selection Enabled Formation of Abrupt Axial Heterojunctions in Branched Oxide Nanowires
journal, December 2011

  • Gao, Jing; Lebedev, Oleg I.; Turner, Stuart
  • Nano Letters, Vol. 12, Issue 1
  • DOI: 10.1021/nl2035089

Epitaxy-Enabled Vapor–Liquid–Solid Growth of Tin-Doped Indium Oxide Nanowires with Controlled Orientations
journal, July 2014

  • Shen, Youde; Turner, Stuart; Yang, Ping
  • Nano Letters, Vol. 14, Issue 8
  • DOI: 10.1021/nl501163n

UV light emitting transparent conducting tin-doped indium oxide (ITO) nanowires
journal, March 2011


Synergetic nanowire growth
journal, September 2007

  • Borgström, Magnus T.; Immink, George; Ketelaars, Bas
  • Nature Nanotechnology, Vol. 2, Issue 9
  • DOI: 10.1038/nnano.2007.263

The effect of the concentration and oxidation state of Sn on the structural and electrical properties of indium tin oxide nanowires
journal, June 2011


Highly Anisotropic Crystals
book, January 1987


Silicon nanowhiskers grown on 〈111〉Si substrates by molecular-beam epitaxy
journal, June 2004

  • Schubert, L.; Werner, P.; Zakharov, N. D.
  • Applied Physics Letters, Vol. 84, Issue 24
  • DOI: 10.1063/1.1762701

Mass Transport Model for Semiconductor Nanowire Growth
journal, July 2005

  • Johansson, Jonas; Svensson, C. Patrik T.; Mårtensson, Thomas
  • The Journal of Physical Chemistry B, Vol. 109, Issue 28
  • DOI: 10.1021/jp051702j

Diameter-Independent Kinetics in the Vapor-Liquid-Solid Growth of Si Nanowires
journal, March 2006


General form of the dependences of nanowire growth rate on the nanowire radius
journal, June 2007


Gibbs-Thomson and diffusion-induced contributions to the growth rate of Si, InP, and GaAs nanowires
journal, May 2009


General theoretical model for the vapor-phase growth and growth rate of semiconductor nanowires
journal, March 2010

  • Mohammad, S. Noor
  • Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, Vol. 28, Issue 2
  • DOI: 10.1116/1.3289321

Vapor-liquid-solid growth of Si nanowires: A kinetic analysis
journal, July 2012

  • Shakthivel, Dhayalan; Raghavan, Srinivasan
  • Journal of Applied Physics, Vol. 112, Issue 2
  • DOI: 10.1063/1.4737597

Surface energy and polarity of treated indium–tin–oxide anodes for polymer light-emitting diodes studied by contact-angle measurements
journal, September 1999

  • Kim, J. S.; Friend, R. H.; Cacialli, F.
  • Journal of Applied Physics, Vol. 86, Issue 5
  • DOI: 10.1063/1.371124

Phosphonic Acid Modification of Indium−Tin Oxide Electrodes: Combined XPS/UPS/Contact Angle Studies
journal, April 2008

  • Paniagua, Sergio A.; Hotchkiss, Peter J.; Jones, Simon C.
  • The Journal of Physical Chemistry C, Vol. 112, Issue 21
  • DOI: 10.1021/jp710893k

Modification of the Surface Properties of Indium Tin Oxide with Benzylphosphonic Acids: A Joint Experimental and Theoretical Study
journal, November 2009

  • Hotchkiss, Peter J.; Li, Hong; Paramonov, Pavel B.
  • Advanced Materials, Vol. 21, Issue 44
  • DOI: 10.1002/adma.200900502

Structure, stability and work functions of the low index surfaces of pure indium oxide and Sn-doped indium oxide (ITO) from density functional theory
journal, January 2010

  • Walsh, Aron; Catlow, C. Richard A.
  • Journal of Materials Chemistry, Vol. 20, Issue 46
  • DOI: 10.1039/c0jm01816c

Surface Energies Control the Self-Organization of Oriented In 2 O 3 Nanostructures on Cubic Zirconia
journal, September 2010

  • Zhang, Kelvin H. L.; Walsh, Aron; Catlow, C. Richard A.
  • Nano Letters, Vol. 10, Issue 9
  • DOI: 10.1021/nl102403t

Plateau–Rayleigh crystal growth of periodic shells on one-dimensional substrates
journal, March 2015

  • Day, Robert W.; Mankin, Max N.; Gao, Ruixuan
  • Nature Nanotechnology, Vol. 10, Issue 4
  • DOI: 10.1038/nnano.2015.23

Growth of Microscale In 2 O 3 Islands on Y-Stabilized Zirconia(100) by Molecular Beam Epitaxy
journal, July 2008

  • Bourlange, A.; Payne, D. J.; Jacobs, R. M. J.
  • Chemistry of Materials, Vol. 20, Issue 14
  • DOI: 10.1021/cm800984r

Size-Dependent Shape and Tilt Transitions in In 2 O 3 Nanoislands Grown on Cubic Y-Stabilized ZrO 2 (001) by Molecular Beam Epitaxy
journal, July 2012

  • Zhang, Kelvin H. L.; Bourlange, Anne; Egdell, Russell G.
  • ACS Nano, Vol. 6, Issue 8
  • DOI: 10.1021/nn301382j

Understanding Self-Aligned Planar Growth of InAs Nanowires
journal, May 2013

  • Zi, Yunlong; Jung, Kyooho; Zakharov, Dmitri
  • Nano Letters, Vol. 13, Issue 6
  • DOI: 10.1021/nl4010332

Epitaxial Growth of Vertically Aligned and Branched Single-Crystalline Tin-Doped Indium Oxide Nanowire Arrays
journal, January 2006


High-Performance Transparent Conducting Oxide Nanowires
journal, December 2006

  • Wan, Qing; Dattoli, Eric N.; Fung, Wayne Y.
  • Nano Letters, Vol. 6, Issue 12
  • DOI: 10.1021/nl062213d

Controlled Synthesis of In 2 O 3 Octahedrons and Nanowires
journal, July 2005

  • Hao, Yufeng; Meng, Guowen; Ye, Changhui
  • Crystal Growth & Design, Vol. 5, Issue 4
  • DOI: 10.1021/cg050103z

Works referencing / citing this record:

Self-catalyzed VLS growth of PbSe wires with significant suppression of the VS process
journal, January 2018

  • Fan, Chao; Xu, Xing; Zhang, Yushuang
  • CrystEngComm, Vol. 20, Issue 35
  • DOI: 10.1039/c8ce00817e

Controllable Epitaxial Growth of Core-Shell PbSe@CsPbBr 3 Wire Heterostructures
journal, September 2018


Morphology-Tailored Halide Perovskite Platelets and Wires: From Synthesis, Properties to Optoelectronic Devices
journal, July 2018

  • Liu, Zhixiong; Mi, Yang; Guan, Xinwei
  • Advanced Optical Materials, Vol. 6, Issue 17
  • DOI: 10.1002/adom.201800413

Kinetics and mechanism of planar nanowire growth
journal, December 2019

  • Rothman, Amnon; Dubrovskii, Vladimir G.; Joselevich, Ernesto
  • Proceedings of the National Academy of Sciences, Vol. 117, Issue 1
  • DOI: 10.1073/pnas.1911505116

Crystal-phase intergradation in InAs nanostructures grown by van der Waals heteroepitaxy on graphene
journal, April 2018

  • Choi, Ji Eun; Yoo, Jinkyoung; Lee, Donghwa
  • Applied Physics Letters, Vol. 112, Issue 14
  • DOI: 10.1063/1.5017251

Towards high-mobility In2xGa2–2xO3 nanowire field-effect transistors
journal, June 2018