DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Quantification of surface displacements and electromechanical phenomena via dynamic atomic force microscopy

Abstract

Detection of dynamic surface displacements associated with local changes in material strain provides access to a number of phenomena and material properties. Contact resonance-enhanced methods of atomic force microscopy (AFM) have been shown capable of detecting ~1–3 pm-level surface displacements, an approach used in techniques such as piezoresponse force microscopy, atomic force acoustic microscopy, and ultrasonic force microscopy. Here, based on an analytical model of AFM cantilever vibrations, we demonstrate a guideline to quantify surface displacements with high accuracy by taking into account the cantilever shape at the first resonant contact mode, depending on the tip–sample contact stiffness. The approach has been experimentally verified and further developed for piezoresponse force microscopy (PFM) using well-defined ferroelectric materials. These results open up a way to accurate and precise measurements of surface displacement as well as piezoelectric constants at the pm-scale with nanometer spatial resolution and will allow avoiding erroneous data interpretations and measurement artifacts. Furthermore, this analysis is directly applicable to all cantilever-resonance-based scanning probe microscopy (SPM) techniques.

Authors:
 [1];  [1];  [2];  [3];  [1];  [4]
  1. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  2. Tsinghua Univ., Beijing (People's Republic of China); Collaborative Innovation Center of Quantum Matter, Beijing (People's Republic of China); RIKEN Center for Emergent Matter Science (CEMS), Saitama (Japan)
  3. Southern Research, Birmingham, AL (United States)
  4. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Univ. of Aveiro, Aveiro (Portugal)
Publication Date:
Research Org.:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1338484
Grant/Contract Number:  
AC05-00OR22725
Resource Type:
Accepted Manuscript
Journal Name:
Nanotechnology
Additional Journal Information:
Journal Volume: 27; Journal Issue: 42; Journal ID: ISSN 0957-4484
Publisher:
IOP Publishing
Country of Publication:
United States
Language:
English
Subject:
77 NANOSCIENCE AND NANOTECHNOLOGY; 36 MATERIALS SCIENCE; scanning probe microscopy; ferroelectrics; cantilever dynamics

Citation Formats

Balke, Nina, Jesse, Stephen, Yu, Pu, Carmichael, Ben, Kalinin, Sergei V., and Tselev, Alexander. Quantification of surface displacements and electromechanical phenomena via dynamic atomic force microscopy. United States: N. p., 2016. Web. doi:10.1088/0957-4484/27/42/425707.
Balke, Nina, Jesse, Stephen, Yu, Pu, Carmichael, Ben, Kalinin, Sergei V., & Tselev, Alexander. Quantification of surface displacements and electromechanical phenomena via dynamic atomic force microscopy. United States. https://doi.org/10.1088/0957-4484/27/42/425707
Balke, Nina, Jesse, Stephen, Yu, Pu, Carmichael, Ben, Kalinin, Sergei V., and Tselev, Alexander. Thu . "Quantification of surface displacements and electromechanical phenomena via dynamic atomic force microscopy". United States. https://doi.org/10.1088/0957-4484/27/42/425707. https://www.osti.gov/servlets/purl/1338484.
@article{osti_1338484,
title = {Quantification of surface displacements and electromechanical phenomena via dynamic atomic force microscopy},
author = {Balke, Nina and Jesse, Stephen and Yu, Pu and Carmichael, Ben and Kalinin, Sergei V. and Tselev, Alexander},
abstractNote = {Detection of dynamic surface displacements associated with local changes in material strain provides access to a number of phenomena and material properties. Contact resonance-enhanced methods of atomic force microscopy (AFM) have been shown capable of detecting ~1–3 pm-level surface displacements, an approach used in techniques such as piezoresponse force microscopy, atomic force acoustic microscopy, and ultrasonic force microscopy. Here, based on an analytical model of AFM cantilever vibrations, we demonstrate a guideline to quantify surface displacements with high accuracy by taking into account the cantilever shape at the first resonant contact mode, depending on the tip–sample contact stiffness. The approach has been experimentally verified and further developed for piezoresponse force microscopy (PFM) using well-defined ferroelectric materials. These results open up a way to accurate and precise measurements of surface displacement as well as piezoelectric constants at the pm-scale with nanometer spatial resolution and will allow avoiding erroneous data interpretations and measurement artifacts. Furthermore, this analysis is directly applicable to all cantilever-resonance-based scanning probe microscopy (SPM) techniques.},
doi = {10.1088/0957-4484/27/42/425707},
journal = {Nanotechnology},
number = 42,
volume = 27,
place = {United States},
year = {Thu Sep 15 00:00:00 EDT 2016},
month = {Thu Sep 15 00:00:00 EDT 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 87 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Nanoscale Visualization and Control of Ferroelectric Domains by Atomic Force Microscopy
journal, May 1995


Nonlinear Phenomena in Multiferroic Nanocapacitors: Joule Heating and Electromechanical Effects
journal, October 2011

  • Kim, Yunseok; Kumar, Amit; Tselev, Alexander
  • ACS Nano, Vol. 5, Issue 11
  • DOI: 10.1021/nn203342v

Nanoscale Imaging of Plasmonic Hot Spots and Dark Modes with the Photothermal-Induced Resonance Technique
journal, June 2013

  • Lahiri, Basudev; Holland, Glenn; Aksyuk, Vladimir
  • Nano Letters, Vol. 13, Issue 7
  • DOI: 10.1021/nl401284m

Real Space Mapping of Li-Ion Transport in Amorphous Si Anodes with Nanometer Resolution
journal, September 2010

  • Balke, Nina; Jesse, Stephen; Kim, Yoongu
  • Nano Letters, Vol. 10, Issue 9
  • DOI: 10.1021/nl101439x

Imaging and measurement of local mechanical material properties by atomic force acoustic microscopy: Mechanical materials properties by AFAM
journal, February 2002

  • Rabe, U.; Amelio, S.; Kopycinska, M.
  • Surface and Interface Analysis, Vol. 33, Issue 2
  • DOI: 10.1002/sia.1163

Nanoscale elastic-property measurements and mapping using atomic force acoustic microscopy methods
journal, September 2005

  • Hurley, D. C.; Kopycinska-Müller, M.; Kos, A. B.
  • Measurement Science and Technology, Vol. 16, Issue 11
  • DOI: 10.1088/0957-0233/16/11/006

Scanning force microscopy for the study of domain structure in ferroelectric thin films
journal, March 1996

  • Gruverman, A.
  • Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, Vol. 14, Issue 2
  • DOI: 10.1116/1.589143

Differentiating 180° and 90° switching of ferroelectric domains with three-dimensional piezoresponse force microscopy
journal, November 2000

  • Roelofs, A.; Böttger, U.; Waser, R.
  • Applied Physics Letters, Vol. 77, Issue 21, p. 3444-3446
  • DOI: 10.1063/1.1328049

Electromechanical Imaging and Spectroscopy of Ferroelectric and Piezoelectric Materials: State of the Art and Prospects for the Future
journal, August 2009


Nanoscale mapping of ion diffusion in a lithium-ion battery cathode
journal, August 2010


Local Detection of Activation Energy for Ionic Transport in Lithium Cobalt Oxide
journal, June 2012

  • Balke, Nina; Kalnaus, Sergiy; Dudney, Nancy J.
  • Nano Letters, Vol. 12, Issue 7
  • DOI: 10.1021/nl300219g

Quantitative determination of contact stiffness using atomic force acoustic microscopy
journal, March 2000


Atomic force acoustic microscopy methods to determine thin-film elastic properties
journal, August 2003

  • Hurley, D. C.; Shen, K.; Jennett, N. M.
  • Journal of Applied Physics, Vol. 94, Issue 4
  • DOI: 10.1063/1.1592632

Ultrasonic force microscopy for nanometer resolution subsurface imaging
journal, January 1994

  • Yamanaka, Kazushi; Ogiso, Hisato; Kolosov, Oleg
  • Applied Physics Letters, Vol. 64, Issue 2
  • DOI: 10.1063/1.111524

Resonance enhancement in piezoresponse force microscopy: Mapping electromechanical activity, contact stiffness, and Q factor
journal, July 2006

  • Jesse, Stephen; Mirman, Boris; Kalinin, Sergei V.
  • Applied Physics Letters, Vol. 89, Issue 2
  • DOI: 10.1063/1.2221496

Nonlinear contact resonance spectroscopy in atomic force microscopy
journal, November 2007


Controlled Nanopatterning of a Polymerized Ionic Liquid in a Strong Electric Field
journal, December 2014

  • Bocharova, Vera; Agapov, Alexander L.; Tselev, Alexander
  • Advanced Functional Materials, Vol. 25, Issue 5
  • DOI: 10.1002/adfm.201402852

Electrostatic nanolithography in polymers using atomic force microscopy
journal, June 2003

  • Lyuksyutov, Sergei F.; Vaia, Richard A.; Paramonov, Pavel B.
  • Nature Materials, Vol. 2, Issue 7
  • DOI: 10.1038/nmat926

Peculiarities of an anomalous electronic current during atomic force microscopy assisted nanolithography on n-type silicon
journal, May 2003


Induced Water Condensation and Bridge Formation by Electric Fields in Atomic Force Microscopy
journal, August 2006

  • Sacha, G. M.; Verdaguer, A.; Salmeron, M.
  • The Journal of Physical Chemistry B, Vol. 110, Issue 30
  • DOI: 10.1021/jp061148t

Ab Initio Molecular Dynamics Study of Dissociation of Water under an Electric Field
journal, May 2012


The Role of Electrochemical Phenomena in Scanning Probe Microscopy of Ferroelectric Thin Films
journal, June 2011

  • Kalinin, Sergei V.; Jesse, Stephen; Tselev, Alexander
  • ACS Nano, Vol. 5, Issue 7
  • DOI: 10.1021/nn2013518

Electrostrictive and electrostatic responses in contact mode voltage modulated scanning probe microscopies
journal, June 2014

  • Eliseev, Eugene A.; Morozovska, Anna N.; Ievlev, Anton V.
  • Applied Physics Letters, Vol. 104, Issue 23
  • DOI: 10.1063/1.4882861

Background-free piezoresponse force microscopy for quantitative measurements
journal, February 2014

  • Wang, Wenbo; Geng, Yanan; Wu, Weida
  • Applied Physics Letters, Vol. 104, Issue 7
  • DOI: 10.1063/1.4866264

Quantification of electromechanical coupling measured with piezoresponse force microscopy
journal, August 2014

  • Lepadatu, Serban; Stewart, Mark; Cain, Markys G.
  • Journal of Applied Physics, Vol. 116, Issue 6
  • DOI: 10.1063/1.4891353

Quantitative measurements of electromechanical response with a combined optical beam and interferometric atomic force microscope
journal, June 2015

  • Labuda, Aleksander; Proksch, Roger
  • Applied Physics Letters, Vol. 106, Issue 25
  • DOI: 10.1063/1.4922210

Electromechanical detection in scanning probe microscopy: Tip models and materials contrast
journal, July 2007

  • Eliseev, Eugene A.; Kalinin, Sergei V.; Jesse, Stephen
  • Journal of Applied Physics, Vol. 102, Issue 1
  • DOI: 10.1063/1.2749463

Frequency modulation detection using high‐ Q cantilevers for enhanced force microscope sensitivity
journal, January 1991

  • Albrecht, T. R.; Grütter, P.; Horne, D.
  • Journal of Applied Physics, Vol. 69, Issue 2
  • DOI: 10.1063/1.347347

Resolution theory, and static and frequency-dependent cross-talk in piezoresponse force microscopy
journal, September 2010


Atomic Force Acoustic Microscopy
book, January 2006


Force modulation with a scanning force microscope: an analysis
journal, January 1997

  • Mazeran, Pierre-Emmanuel; Loubet, Jean-Luc
  • Tribology Letters, Vol. 3, Issue 1, p. 125-132
  • DOI: 10.1023/A:1019123525610

Lateral stiffness: A new nanomechanical measurement for the determination of shear strengths with friction force microscopy
journal, March 1997

  • Carpick, R. W.; Ogletree, D. F.; Salmeron, M.
  • Applied Physics Letters, Vol. 70, Issue 12
  • DOI: 10.1063/1.118639

Measurement of Poisson’s ratio with contact-resonance atomic force microscopy
journal, August 2007

  • Hurley, D. C.; Turner, J. A.
  • Journal of Applied Physics, Vol. 102, Issue 3
  • DOI: 10.1063/1.2767387

Acoustic spectroscopy of lithium niobate: Elastic and piezoelectric coefficients
journal, September 2002

  • Ogi, Hirotsugu; Kawasaki, Yasunori; Hirao, Masahiko
  • Journal of Applied Physics, Vol. 92, Issue 5
  • DOI: 10.1063/1.1497702

Contact-resonance atomic force microscopy for viscoelasticity
journal, January 2008

  • Yuya, P. A.; Hurley, D. C.; Turner, J. A.
  • Journal of Applied Physics, Vol. 104, Issue 7
  • DOI: 10.1063/1.2996259

Normal and lateral modulation with a scanning force microscope, an analysis: implication in quantitative elastic and friction imaging
journal, January 1999

  • Mazeran, Pierre‐Emmanuel; Loubet, Jean‐Luc
  • Tribology Letters, Vol. 7, Issue 4, p. 199-212
  • DOI: 10.1023/A:1019142025011

Relationship between Q-factor and sample damping for contact resonance atomic force microscope measurement of viscoelastic properties
journal, June 2011

  • Yuya, P. A.; Hurley, D. C.; Turner, J. A.
  • Journal of Applied Physics, Vol. 109, Issue 11
  • DOI: 10.1063/1.3592966

Band excitation in scanning probe microscopy: sines of change
journal, November 2011


Differentiating Ferroelectric and Nonferroelectric Electromechanical Effects with Scanning Probe Microscopy
journal, May 2015


Exploring Local Electrostatic Effects with Scanning Probe Microscopy: Implications for Piezoresponse Force Microscopy and Triboelectricity
journal, October 2014

  • Balke, Nina; Maksymovych, Petro; Jesse, Stephen
  • ACS Nano, Vol. 8, Issue 10
  • DOI: 10.1021/nn505176a

Towards local electromechanical probing of cellular and biomolecular systems in a liquid environment
journal, September 2007


Finite-size effects and analytical modeling of electrostatic force microscopy applied to dielectric films
journal, June 2014


Switching spectroscopy piezoresponse force microscopy of ferroelectric materials
journal, February 2006

  • Jesse, Stephen; Baddorf, Arthur P.; Kalinin, Sergei V.
  • Applied Physics Letters, Vol. 88, Issue 6
  • DOI: 10.1063/1.2172216

Excluding Contact Electrification in Surface Potential Measurement Using Kelvin Probe Force Microscopy
journal, January 2016


In Situ Quantitative Study of Nanoscale Triboelectrification and Patterning
journal, May 2013

  • Zhou, Yu Sheng; Liu, Ying; Zhu, Guang
  • Nano Letters, Vol. 13, Issue 6
  • DOI: 10.1021/nl401006x

Manipulating Nanoscale Contact Electrification by an Applied Electric Field
journal, February 2014

  • Zhou, Yu Sheng; Wang, Sihong; Yang, Ya
  • Nano Letters, Vol. 14, Issue 3
  • DOI: 10.1021/nl404819w

Characterizing nanoscale scanning probes using electron microscopy: A novel fixture and a practical guide
journal, January 2016

  • Jacobs, Tevis D. B.; Wabiszewski, Graham E.; Goodman, Alexander J.
  • Review of Scientific Instruments, Vol. 87, Issue 1
  • DOI: 10.1063/1.4937810

Electrostrictive and electrostatic responses in contact mode voltage modulated Scanning Probe Microscopies
text, January 2014


Electromechanical Detection in Scanning Probe Microscopy: Tip Models and Materials Contrast
text, January 2006


Works referencing / citing this record:

Piezoresponse force microscopy and nanoferroic phenomena
journal, April 2019


Tunable quadruple-well ferroelectric van der Waals crystals
journal, November 2019


Electrostatic-free piezoresponse force microscopy
journal, January 2017

  • Kim, Sungho; Seol, Daehee; Lu, Xiaoli
  • Scientific Reports, Vol. 7, Issue 1
  • DOI: 10.1038/srep41657

Ferroelectric or non-ferroelectric: Why so many materials exhibit “ferroelectricity” on the nanoscale
journal, June 2017

  • Vasudevan, Rama K.; Balke, Nina; Maksymovych, Peter
  • Applied Physics Reviews, Vol. 4, Issue 2
  • DOI: 10.1063/1.4979015

Direct observation of shear piezoelectricity in poly- l -lactic acid nanowires
journal, July 2017

  • Smith, Michael; Calahorra, Yonatan; Jing, Qingshen
  • APL Materials, Vol. 5, Issue 7
  • DOI: 10.1063/1.4979547

Correlation between drive amplitude and resonance frequency in electrochemical strain microscopy: Influence of electrostatic forces
journal, June 2017

  • Lushta, Valon; Bradler, Stephan; Roling, Bernhard
  • Journal of Applied Physics, Vol. 121, Issue 22
  • DOI: 10.1063/1.4984831

Piezoresponse force and electrochemical strain microscopy in dual AC resonance tracking mode: Analysis of tracking errors
journal, January 2018

  • Bradler, Stephan; Schirmeisen, André; Roling, Bernhard
  • Journal of Applied Physics, Vol. 123, Issue 3
  • DOI: 10.1063/1.5004472

Enhanced piezoelectricity of thin film hafnia-zirconia (HZO) by inorganic flexible substrates
journal, July 2018

  • Hsain, H. Alex; Sharma, Pankaj; Yu, Hyeonggeun
  • Applied Physics Letters, Vol. 113, Issue 2
  • DOI: 10.1063/1.5031134

Development of a scanning probe microscopy integrated atomic layer deposition system for in situ successive monitoring of thin film growth
journal, December 2018

  • Cao, Kun; Hu, Quan; Cai, Jiaming
  • Review of Scientific Instruments, Vol. 89, Issue 12
  • DOI: 10.1063/1.5042463

Electrostatic contribution to hysteresis loop in piezoresponse force microscopy
journal, April 2019

  • Qiao, Huimin; Seol, Daehee; Sun, Changhyo
  • Applied Physics Letters, Vol. 114, Issue 15
  • DOI: 10.1063/1.5090591

Experimental reconstruction of the contact resonance shape factor for quantification and amplification of bias-induced strain in atomic force microscopy
journal, April 2019

  • Killgore, Jason P.; Deolia, Akshay; Robins, Lawrence
  • Applied Physics Letters, Vol. 114, Issue 13
  • DOI: 10.1063/1.5091803

Local electromechanical characterization of Pr doped BiFeO 3 ceramics
journal, March 2018


Quantification of in-contact probe-sample electrostatic forces with dynamic atomic force microscopy
journal, January 2017


Piezoelectric displacement mapping of compliant surfaces by constant-excitation frequency-modulation piezoresponse force microscopy
journal, November 2019


Higher-eigenmode piezoresponse force microscopy: a path towards increased sensitivity and the elimination of electrostatic artifacts
journal, March 2018

  • MacDonald, Gordon A.; DelRio, Frank W.; Killgore, Jason P.
  • Nano Futures, Vol. 2, Issue 1
  • DOI: 10.1088/2399-1984/aab2bc

Nanoscale spatial mapping of mechanical properties through dynamic atomic force microscopy
journal, January 2019

  • Abooalizadeh, Zahra; Sudak, Leszek Josef; Egberts, Philip
  • Beilstein Journal of Nanotechnology, Vol. 10
  • DOI: 10.3762/bjnano.10.132

Correlative electrochemical strain and scanning electron microscopy for local characterization of the solid state electrolyte Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3
journal, January 2018

  • Schön, Nino; Gunduz, Deniz Cihan; Yu, Shicheng
  • Beilstein Journal of Nanotechnology, Vol. 9
  • DOI: 10.3762/bjnano.9.148

Ferroelectric or non-ferroelectric: why so many materials exhibit ferroelectricity on the nanoscale
preprint, January 2017


Piezoresponse force microscopy and nanoferroic phenomena
journal, April 2019


Electrostatic-free piezoresponse force microscopy
journal, January 2017

  • Kim, Sungho; Seol, Daehee; Lu, Xiaoli
  • Scientific Reports, Vol. 7, Issue 1
  • DOI: 10.1038/srep41657

Nanoscale spatial mapping of mechanical properties through dynamic atomic force microscopy
journal, January 2019

  • Abooalizadeh, Zahra; Sudak, Leszek Josef; Egberts, Philip
  • Beilstein Journal of Nanotechnology, Vol. 10
  • DOI: 10.3762/bjnano.10.132